Embedded Software

CS 145/145L

Caio Batista de Melo

CS145 - Spring 22

Announcements (2022-04-21)

e Project 1 was due yesterday
e Homework 2 is due tomorrow

e Keypad detects the wrong button being pressed

o Add a small delay (1ms) between writing a week 1 and reading it back

o It should let the microcontroller read the final value “after things have settled”

% CS145 - Spring ‘22 5

What is a State Machine (SM)?

Collection of states with info on:

e how to go from one state to another one;
e what to do in each state.

Example: ICS2-162 lights
Flip switch up

Flip switch down

% CS145 - Spring ‘22 3

States

e Describes the state of the system;

e Can have actions attached to them.

Example: ICS2-162 lights

“give” power to light ‘remove” power from light

% CS145 - Spring ‘22 A

Transitions

Describes what’s the next state;

The next state can be the same one!
Can have conditions attached to them;
Can have actions attached to them.

Example: ICS2-162 lights

switch down switch up switch up

[N\

“give” power to light ‘remove” power from light

% CS145 - Spring ‘22 5

Initial State

Defines where do you start in the SM.
Can have some initialization for the system (e.g., clean variables).

Example: ICS2-162 lights

switch down switch up switch up

DR

“give” power to light ‘remove” power from light

% CS145 - Spring ‘22 .

SM for Project 1

Project 1: blink an LED whenever a button is pressed.

How can we do that with a SM?

e \What are the states?
e \What are their actions?

e How do we switch between them?

% CS145 - Spring ‘22 .

SM for Project 1

ICS2-162 lights:

switch down switch up switch up
“give” power to light l “‘remove” power from light

Not just flipping between them after an event,
might need more states and actions.

% CS145 - Spring ‘22

SM for Project 1 (v1)

IGET_BIT(PINB, 1)

GET_BIT(PINB, 1)

SET_BIT(PORTB, 0);
avr_wait(500);

CLR_BIT(PORTB, 0);
avr_wait(500);

% CS145 - Spring ‘22 0

SM for Project 1 (v2)

GET_BIT(PINB, 1) IGET_BIT(PINB, 1)
IGET_BIT(PINB, 1)

Button
NOT
Pushed

Button
could be Pushed

unconditional

GET_BIT(PINB, 1
DDRB =1, BIT 1) SET_BIT(PORTB, 0);

avr_wait(500);
CLR_BIT(PORTB, 0);
avr_wait(500);

Init

% CS145 - Spring ‘22 0

SMs in C-Code

There are libraries that can manage it for you:
e RIBS (zybooks)
e https://github.com/misje/stateMachine
e https://aithub.com/endurodave/C StateMachine

But it's usually straightforward to implement them!

% CS145 - Spring 22 .

https://github.com/misje/stateMachine
https://github.com/endurodave/C_StateMachine

SMs in C-Code LIGE SEEiEe =

while (1) {

INITIAL_STATE;

switch(state) {

Start on initial state case 0:

state 0 actions();

state = state @ transition();
Loop forever -
break;
case 1:
Figure out current state state 1 actions();
state = state_ 1 transition();
Execute actions for the state break;
default:
break;
Transition to next state }
}

%

12

Why use SMs?

e easy to understand;)

e easy to design; > usually...

e easy toimplement;
e can describe complex systems;

e have a formal definition!

% CS145 - Spring ‘22 -

Some Applications of SMs

e Embedded systems
e Model checking
e Games

e Object Detection

% CS145 - Spring 22 ”

SMs in Action (Embedded)

1/0 = Dispense/Do not
dispense merchandise

A dime is 1/0 = Return/Do not return
inserted a nickel in change
Q/110 A 1/0 = Return/Do not

N/100 D/110<—

return a dime in change

Nickel
D Dime

https://www.csee.umbc.edu/courses/undergraduate/313/Fall03/cpatel2/slides/slides20.pdf

S CS145 - Spring 22

15

https://www.csee.umbc.edu/courses/undergraduate/313/Fall03/cpatel2/slides/slides20.pdf

SMs in Action (Model Checking)

Empty

@)
@)

Mode!
(system requ:rementsb

"Model 2 Answer
\ checking)= Yes if model satisfies
& tools < specification

|
=" A Counter-example if model
dees not satisfy specification

f Specification
(system property)

pump is always off if ground tank is empty or up tank is full
it is always possible to reach a state when the up tank is ok or full

AG AF ((level_a = empty | level b = full) -> pump = off)
AG (EF (level_b = ok | level_b = full))

https://www.embedded.com/an-introduction-to-model-checking/

CS145 - Spring 22

A = for all
E = exists
F = future
G = always

16

https://www.embedded.com/an-introduction-to-model-checking/

SMs in Action (Probabilistic Model Checking)

https://bookdown.org/probability/beta/markov-chains.html

This can be used in a lot of areas! https://www.prismmodelchecker.ora/casestudies/index.php

% CS145 - Spring 22 17

https://bookdown.org/probability/beta/markov-chains.html
https://www.prismmodelchecker.org/casestudies/index.php

SMs in Action (Games)

Jumping

ATTACK

A

DLE

v

Standing

JUMP RUN

http://howtomakeanrpg.com/a/state-machines.html

https://gamedevelopertips.com/finite-state-machine-game-developers/

WIS CS145 - Spring ‘22 18

http://howtomakeanrpg.com/a/state-machines.html
https://gamedevelopertips.com/finite-state-machine-game-developers/

SMs in Action (Object Detection)

00/01/10 1

1 01
a 11 G 01 6 01 & Count>T e
2 |
\ 11 01

00/10

00/10
00/10 L

Fig. 3: State diagram of the pixel-based Finite State Machine.
MF stands for Moving Foreground, CSF stands for Candidate
Static Foreground, OCSF stands for Occluded Static Fore-
ground, SFO stands for Static Foreground Object.

https://ieeexplore.ieee.org/document/8486464

Initial
state

Detected =\,
yes
&
Recognition
= possible

Recognized
=yes

Recognized
=no

»

Tracked
=no

Tracking Detecting
‘ Detected
=yes
Tracked

= yes Detected
=no

Figure 7. Three-State FSM proposed
http://www.ijeei.ora/docs-10175997155e11e583808fb.pdf

S CS145 - Spring ‘22 19

http://www.ijeei.org/docs-10175997155e11e583808fb.pdf
https://ieeexplore.ieee.org/document/8486464

See you next time :)

Q&A

20

