

Embedded Software CS 145/145L

Caio Batista de Melo

CS145 - Spring '22

- Project 4 is due tomorrow;
- So is homework 4!
- Next Tuesday, we'll have a guest lecture:
 - Speaker: Dr. Hamid Nejatollahi
 - Topic: Post-Quantum Cryptography
 - Speaker profile: <u>https://scholar.google.com/citations?user=q3Aba5MAAAAJ&hl=en</u>
 - Will be on Zoom, I'll share the link in an announcement on Monday;

- Digital Signal Processing
- Sensors and Actuators
- ADC Recap
- Amplification and Bias
- Approximations

Cyber System and Physical World Interaction

Sensors and Actuators

Actuators

Sensor + Actuator

ADC Recap

ADC Example

Range

3 bit quantization

ADC Example

4 bit quantization

2 bit quantization

ADC Example

Amplification and Bias

ADC Amplification

Can increase gain; amplify the signal (page 215 of manual)

ADC Bias

ADC Bias Correction

CS145 - Spring '22

Approximations

Approximations

Sampling rate must be at least 2 * max frequency (Nyquist rate); This rate allows us to see the quickest event that might happen; Should we sample faster than this?

1/30 sec 0, -45, ...

1/30

sec

Sampling Rate

0, 90, ...

Aliasing Example

https://www.youtube.com/watch?v=VXJ0u3ZNdNq

Quantization

Quantization Example (RGB)

Do you see any difference? Probably below threshold of perception

Quantization Example (RGB)

Do you see any difference now? This difference is meaningful!

Should take into account what the user can perceive when choosing the ADC precision; However, if you already have an ADC, just use max precision.

See you next time :)

Q & A