
Characterization of Implied Scenarios as Families of Common Behavior

Caio Batista de Meloa,b, André Luiz Fernandes Cançadoc, Genaı́na Nunes Rodriguesa,∗

aDepartment of Computer Science, University of Brası́lia, Brazil
bDepartment of Computer Science, University of California, Irvine, USA

cDepartment of Statistics, University of Brası́lia, Brazil

Abstract

Concurrent systems face a threat to their reliability in emergent behaviors, which are not included in the specification
but can happen during runtime. When concurrent systems are modeled in a scenario-based manner, it is possible to
detect emergent behaviors as implied scenarios (ISs) which, analogously, are unexpected scenarios that can happen
due to the concurrent nature of the system. Until now, the process of dealing with ISs can demand significant time
and effort from the user, as they are detected and dealt with in a one by one basis. In this paper, a new methodology
is proposed to deal with various ISs at a time, by finding Common Behaviors (CBs) among them. Additionally, we
propose a novel way to group CBs into families utilizing a clustering technique using the Smith-Waterman algorithm
as a similarity measure. Thus allowing the removal of multiple ISs with a single fix, decreasing the time and effort
required to achieve higher system reliability. A total of 1798 ISs were collected across seven case studies, from which
14 families of CBs were defined. Consequently, only 14 constraints were needed to resolve all collected ISs, applying
our approach. These results support the validity and effectiveness of our methodology.

Keywords: Dependability, Implied Scenarios, Concurrent Systems, Smith-Waterman algorithm, Hierarchical
Clustering

1. Introduction

A useful way to model distributed systems’ specifi-
cations is to use scenarios. A scenario depicts how dif-
ferent components interact to achieve a common goal.
Message Sequence Charts [1] and UML sequence di-
agrams [2] are two commonly used methods to de-
sign and display these scenarios. Both of these tech-
niques use the idea of components that send each other
messages, that is, two different components that need
to work together to achieve a goal can interact syn-
chronously or asynchronously with each other through
message passing.

Scenario specifications are widely used. Neverthe-
less, according to Song et al. [3], such specifications
can describe only partial behaviors of a system, while
its implementation has full behaviors. As a result, such
limitations can lead to a common fault in scenario spec-
ifications, which are implied scenarios. Implied scenar-
ios are unexpected behaviors that can emerge at runtime

∗Corresponding author.
Email addresses: cbatista@uci.edu (Caio Batista de Melo),

acancado@unb.br (André Luiz Fernandes Cançado),
genaina@cic.unb.br (Genaı́na Nunes Rodrigues)

due to components’ interactions that are implied in the
specification [3]. That is, different components believe
they are behaving correctly on its own, but the compo-
sition of all their actions together is not included in the
original specification. More formally, “implied scenar-
ios indicate gaps in a scenario-based specification that
are the result of specifying the behavior of a system
from a global perspective yet expecting the behavior to
be provided in a local component-wise fashion by inde-
pendent entities with a local view of the system” [4].

Even though implied scenarios can lead to unex-
pected behaviors, they are not always unacceptable be-
haviors [5]. An implied scenario can be a positive sce-
nario that was overlooked in the original specification
or be indeed an unacceptable behavior. For the former,
it can be simply included in the specification, while the
latter has to be constrained. Therefore, implied scenar-
ios should be detected and validated with stakeholders
[6] to define how to deal with them. If left untreated
these scenarios can cause damage if they lead to un-
wanted behaviors [7]. Particularly, implied scenarios
can affect the reliability [8] and security [9] of a sys-
tem. Thus, it is desirable to deal with these implied sce-

Preprint submitted to Journal of Systems and Software September 17, 2019

narios before the system is up and running to prevent
unwanted behavior. However, the process of detecting
implied scenarios has been proved to be undecidable by
Chakraborty et al. [10], meaning that there is no guaran-
tee that the detection of all implied scenarios of a given
system will ever stop in polynomial time.

Several approaches to detect implied scenarios have
been devised (e.g., [3–5, 11–13]). Most of them, how-
ever, do not go further on the process of dealing with
implied scenarios, that is, they stop their methodologies
after detecting implied scenarios. In other words, they
neither suggest a solution nor try to �nd the root of the
underlying cause. By doing so, it can lead the user to
spend a lot of time analyzing a large number of implied
scenarios. Some exceptions, such as Uchitel et al. [4],
Song et al. [3], and Moshirpour et al. [13], show the
cause to the user and suggest solutions for the problem
to be �xed. However, these approaches can still out-
put a large number of implied scenarios, which can be
cumbersome to the user. Since these approaches do not
further investigate the correlation between the implied
scenarios, they could misguide the user on how to deal
with such implied scenarios at large.

In this work, we propose a methodology to �ll in the
literature gap, which is achieved by �nding common be-
haviors among implied scenarios that lead the system
to unexpected behavior. The methodology consists on
the characterization of implied scenarios as families of
common behaviors, comprising three major steps: (i)
collect multiple implied scenarios; (ii) detect common
behaviors among them; and, (iii) characterize such com-
mon behaviors as families. For the �rst step, we extend
the approach by Uchitel et al. [4], where we automated
the process of collecting implied scenarios, that is, in-
stead of detecting a single IS, our approach iteratively
collects multiple distinct ISs without the need of user in-
teraction. From these collected implied scenarios, their
underlying core common behaviors are extracted.

Following, a characterization process is performed in
order to de�ne families of common behaviors. Next,
each family of common behaviors is dealt with in a sin-
gle �x. In other words, we are able to resolve multiple
implied scenarios at once. By these means, we limit the
problem space of the undecidability of implied scenario
detection by treating the implied scenarios as a group,
instead of individually. As a result, we contribute to an-
swering a research question previously raised by Uchitel
et al. [6]: “should the entire implied scenario be con-
strained or is the unaccepted situation due to a speci�c
subsequence of actions that appear in the implied sce-
nario?” In fact, our methodology has evidenced that
it is possible to prevent unaccepted situations by con-

straining speci�c subsequence of actions, which we call
common behaviors.

To accomplish our purpose, we use the Smith-
Waterman algorithm [14], widely used in bioinformat-
ics research. The Smith-Waterman algorithm (SW) is
used to identify the best local alignment between ge-
netic sequences, that is, it tries to �nd which parts of
the two sequences have the most in common. In our
work, the bene�ts of using this algorithm are two-fold:
(i) it can be used to �nd the underlying behavior among
common behaviors, and (ii) the score calculated by the
algorithm can be used to cluster the CBs, which assists
the user to de�ne the families. As such, we are able to:
(i) group common behaviors into families by using this
algorithm, and (ii) restrict the problem space that the
user needs to analyze.

In order to evaluate the proposed methodology, we
performed seven case studies with system speci�cations
reported in the literature. Throughout these case studies,
we collected a total of 1798 implied scenarios, which
demanded nearly 37 hours. From these implied scenar-
ios, our methodology was able to come up with only
14 families of common behaviors, where each family
required a single constraint and each system speci�ca-
tion required at most three constraints to prevent all col-
lected implied scenarios. Additionally, our methodol-
ogy shows that the same 14 families could have been
found with 424 collected implied scenarios instead of
the original 1798. This reduced the timespan of the de-
tection process from nearly 37 hours to under 24 min-
utes. And then, an additional of mere 3.2s was required
to run our clusterization process based on SW to iden-
tify the families of CBs of the seven case studies. Thus,
our methodology has considerably coped with both time
and space analysis of multiple implied scenarios in the
case studies evaluated.

The rest of this paper is structured as follows: Sec-
tion 2 introduces and details technical concepts used
in the methodology; Section 3 explains the proposed
methodology in further details and uses an example sys-
tem to illustrate the approach; Section 4 shows the re-
sults obtained through seven case studies and discusses
the results; Section 5 discusses the related work in the
literature; �nally, Section 6 summarizes the contribu-
tions from this paper and introduces some ideas for fu-
ture work.

2. Background

In this section, de�nitions and technical concepts that
are used throughout this work will be laid out and ex-
plained with examples, where applicable.

2

2.1. Scenarios

“Scenarios describe how system components, the en-
vironment and users work concurrently and interact in
order to provide system level functionality” [4]. Simply
put, a scenario is a description of a system's action. It
describes what the user expects from the system when
interacting with it. We can model entire systems based
solely on scenarios that it needs to execute, this is called
a positive scenario-based model by Uchitel et al. [4].

The Boiler System[4] will be used as a running ex-
ample. TheBoiler Systemis a system that controls the
temperature inside a boiler, according to the measured
pressure by its sensor. It has the following components:

Actuator variates the temperature inside the boiler;

Control tells the actuator to act according to the last
pressure measured;

Database stores the measured pressures;

Sensor measures the pressure inside the boiler.

This system performs four scenarios, and these are all
accomplished by interactions between the components.
Below these scenarios are shown and the interactions
between the system's components are described:

Initialise : Control tells Sensorto start monitoring the
pressure;

Terminate : ControltellsSensorto stop monitoring the
pressure;

Register : SensorsendsDatabasethe current pressure
so it is stored and can be queried later on;

Analysis : ControlqueriesDatabasefor the latest pres-
sure and tellsActuatorto alter the boiler's temper-
ature accordingly.

By implementing these four scenarios, we have a sys-
tem that was modeled on a scenario-based way.

2.1.1. Message Sequence Chart
A message sequence chart (MSC) is a simple and

intuitive graphical representation of a scenario [1]. It
explicitly shows the interactions between components,
by showing each one of those as a message sent from
one component to another. We can use MSCs to show
theBoiler System's scenarios described above as in Fig-
ure 1. As it can be seen, it is a convenient way to ex-
emplify the interactions that happen for a scenario to be
achieved.

Figure 1: bMSCs representing the Boiler's scenarios.

The MSCs shown in Figure 1 are said to be basic
message sequence charts (bMSCs), which describe a �-
nite interaction between a set of components [4]. In the
Initialize scenario for instance, theControl instance is
sending the messageonto theSensorinstance. A bMSC
does not necessarily convey an order to the messages.
However, in our case, there is only one bMSC with more
than one message. Therefore, the other ones have only
one possible order of execution, which is sending their
only message.

For theAnalysebMSC however, there are three mes-
sages that could lead to more possible orders of execu-
tion. In this case, it is important to note that an instance
of a bMSC has to follow the order on which the mes-
sages are sent or received. For instance, theDatabase
instance can only send thedatamessage after thequery
message is received. Hence, this scenario only has one
possible order as well. Formally, De�nition 2.1 shows
how bMSCs are de�ned by Uchitel et al. [4], which is
the one used in this work.

De�nition 2.1 (Basic Message Sequence Chart). A ba-
sic message sequence chart (bMSC) is a structureb =
(E; L; I ; M; instance; label; order) where: E is a count-
able set of events that can be partitioned into a set of
send and receive events that we denotesend(E) and
receive(E). L is a set of message labels. We use� (b) to
denoteL. I is a set of instance names.M : send(E) !
receive(E) is a bijection that pairs send and receive
events. We refer to the pairs inM as messages. The
function instance:E ! I maps every event to the in-
stance on which the event occurs. Giveni 2 I , we de-
notefe 2 Ejinstance(e) = igasi(E). The function la-
bel: E ! L maps events to labels. We require for all
(e; e0) 2 M that label(e) = label(e0), and if (v; v0) 2 M
andlabel(e) = label(v), theninstance(e) = instance(v)
andinstance(e0) = instance(v0). order is a set of total
orders� i � i(E) � i(E) with i 2 I and� i corresponding

3

Figure 2: hMSC of the Boiler system speci�cation.

to the top-down ordering of events on instancei.

An extension of bMSCs are high-level message se-
quence charts (hMSCs), which provides the means for
composing bMSCs [4]. These can be used to show the
possible paths of execution of a system, that is, the pos-
sible continuations after each bMSC, in a way that it
is visually and easily understood. As an example, in
Figure 2 the hMSC for theBoiler Systemis shown. It
is possible to observe that the scenarios are ordered in a
way that the system delivers correct service. The formal
de�nition of hMSCs by Uchitel et al. [4] is presented in
De�nition 2.2.

De�nition 2.2 (High-Level Message Sequence Charts).
A high-level message sequence chart (hMSC) is a graph
of the form (N; E; s0) whereN is a set of nodes,E �
(N � N) is a set of edges, ands0 2 N is the initial node.
We say thatn is adjacent ton0 if (n; n0) 2 E. A (possibly
in�nite) sequence of nodesw = n0; n1; ::: is a path if
n0 = s0, andni is adjacent toni+1 for 0 � i < jwj. We
say a path is maximal if it is not a proper pre�x of any
other path.

Finally, the hMSC depicted in Figure 2 is a special
kind of hMSC, which is called a Positive Speci�cation
(PSpec). Simply put, a PSpec contains an hMSC, a set
of bMSCc, and a bijective function that maps one node
from the hMSC to a single bMSC. The formal de�nition
by Uchitel et al. [4] is presented in De�nition 2.3.

De�nition 2.3 (Positive Message Sequence Chart Spec-
i�cation) . A positive message sequence chart (MSC)
speci�cation is a structurePS pec= (B; H; f) whereB
is a set of bMSCs,H = (N; A; s0) is a hMSC, andf :
N ! B is a bijective function that maps hMSC nodes

to bMSCs. We use� (PS pec) = flj9b 2 B:l 2 � (b)gto
denote the alphabet of the speci�cation.

2.1.2. Labeled Transition System
A labeled transition system (LTS) is a �nite state ma-

chine that has an intuitive easily grasped semantics and
a simple representation [15]. They can be used to repre-
sent the expected order of messages exchanged by each
component of a distributed system.

An LTS is a directed graph, with nodes and edges,
where each node represents a state of the system, and
each edge a transition from one state to another. Edges
are labeled with the message(s) that are exchanged for
that transition to happen. Finally, there is a unique node
that represents the initial state of the system (state 0),
which will be denoted in red. More formally, De�ni-
tion 2.4 shows the de�nition of LTSs by Uchitel et al.
[4].

De�nition 2.4 (Labeled Transition Systems). Let
S tatesbe the universal set of states where state� is the
error state. LetLabelsbe the universal set of message
labels andLabels� = Labels[� where� denotes an in-
ternal component action that is unobservable to other
components. An LTSP is a structure (S; L;4;q) where
S � S tatesis a �nite set of states,L = � (P) [� ,
� (P) � Labelsis a set of labels that denotes the com-
municating alphabet ofP, 4 � (Snf� g � L � S) de�nes
the labeled transitions between states, andq 2 S is the

initial state. We uses
l

! s0 to denote (s; l; s0) 2 4 . In

addition,we say that an LTS P is deterministic ifs
l

! s1

ands
l

! s2 impliess1 = s2.

Figure 3 shows the LTS for each component of the
Boiler system. For instance, the LTS for theS ensor
shows that this component, the �rst message to be ex-
changed must beon, thenpressure, and so on. Note that
each LTS contains only the messages exchanged by that
component (e.g., the LTS for theActuatorhas only one
state and one transition, because that component only
exchanges one message throughout all scenarios).

The LTS for each component is derived based on the
messages the component sends/receives in the scenario
speci�cation. For instance, let us derive the LTS for
Sensor. The LTS starts with a start state, denoted by
the number 0 and marked in red in Figure 3, which is
the initial current state. The hMSC starts in the scenario
init, which does not have any messages, soSensoralso
does not have any interaction. Then in the next state of
the hMSCInitialise, Sensorreceives the message `on',
so a new state in the LTS is added and a transition from

4

Figure 3: Each Boiler component's LTS representing the messages
exchanged.

the current state to the new state is added with the mes-
sage `on' as the label. This new state is then considered
the current state.

The next state in the hMSC isRegister, in whichSen-
sor sends a message `pressure'. Similarly, we create
a new state in the LTS, add the new transition with that
message as the label, and change the current state. Then,
we have three options in the hMSC: (1) loop inRegis-
ter state, (2) transition toAnalysisstate, or (3) transition
to Terminatestate. If (1), we keep sending `pressure'
messages and stay in the same situation. So the transi-
tion from the state in the LTS to itself is added. If (2),
Sensordoes not have any interaction inAnalysis, so we
do not add a new state to the LTS. Finally, if (3), we go
back toTerminate, whereSensorreceives `o� ' and the
system would go next toInitialise, which corresponds
to the �rst extra state we added to the LTS.

Therefore, we add a transition from the current state
back to the original state, labeled with `o� ', and stop the
process, to avoid going into an in�nite loop. After this
whole process, the LTS obtained forSensormatches the
one presented in Figure 3.

Finally, it is possible to combine di� erent LTSs by
doing a parallel composition of them. The resulting LTS
represents the expected order of messages in the entire
system. Figure 4 shows the resulting LTS of the par-
allel composition of the LTSs in Figure 3. It is impor-
tant to note that this model contains all possible com-
binations of states from the components, and includes

even combinations that were not accepted in the original
scenario modeling. Formally, the de�nition of parallel
composition by Uchitel et al. [4] is presented in De�ni-
tion 2.5. The only exceptions to the rules presented are
that state� is used instead of states (x; �) and (�; x) for
all x 2 S tates.

De�nition 2.5 (Parallel Composition of LTS). Let P1

andP2 be LTSs wherePi = (Si ; Li ; 4 i ; qi). Their parallel
composition is denotedP1jjP2 and is an LTS (S; L;4;q)
whereS = S1 � S2 [f �; � g; L = L1 [L2; q = (q1; q2), and
4 is the smallest relation in (Snf� g) � L � S that satis�es
the following rules wherex

a
! i y denotes (x; a; y) 2 4 i :

s
a

! 1 t

(s; s0)
a

! (t; s0)
(a < � (L2));

s
a

! 2 t

(s; s0)
a

! (t; s0)
(a < � (L1));

s
a

! 1 ts0 a
! 2 t0

(s; s0)
a

! (t; t0)
(a < (� (L1) \ � (L2))nf� g):

2.1.3. Finite State Process Notation
The Finite State Process (FSP) is a notation used to

specify the behavior of concurrent systems to theLa-
belled Transition System Analyzer(LTSA) tool1 [15]. A
FSP speci�cation generates LTSs, such as the ones in
Figures 3 and 4. FSP speci�cations contain two sorts of
de�nitions: primitive processes (e.g., individual compo-
nents) and composite processes (e.g., parallel composi-
tions).

For primitive processes, only the notion ofstates, ac-
tion pre�x, andchoicewill be used. Astaterepresents
a state in an LTS, and is named Qi (i= 0,1,2...). It is
denoted by Qi= (a), wherea is either anaction pre�x
or a choiceand represents the existing transitions that
leave this state. Theaction pre�x represents a transition
in an LTS, and is denoted bya -¿b, wherea is a mes-
sage andb is either a message or a state. It indicates that
aftera is exchanged, the LTS will either change to state
b or wait for messageb to be exchanged. Finally,choice
is denoted bya — b, wherea is anaction pre�x andb
is either anaction pre�x or a choice. It indicates that
more than one transition exist leaving that state. Fig-
ure 5 shows the FSPs that generates the corresponding
LTSs in Figure 3.

Finally, the only composite process used in this work
will be parallel composition. It is analogous to the par-
allel composition of LTSs, and it is detonated by (ajjb),

1Available at: https://www.doc.ic.ac.uk/ltsa/.

5

Figure 4: Resulting LTS of the parallel composition of the LTSs in Figure 3.

Figure 5: Each Boiler component's FSP.

wherea is a primitive process, andb is either a primitive
process or a parallel composition. The FSP correspond-
ing to the parallel composition of the Boiler components
(Boiler = (ControljjDatabasejjActuatorjjS ensor)) gen-
erates the LTS in Figure 4.

2.1.4. Implied Scenarios
An implied scenario (IS) is a scenario that was not

included in the system's speci�cation, but it occurs in
every implementation of the speci�cation [16]. It is a
result from implementing actions that are global to the
system, in a local level to the components that executes
them. Because of this implementation, a component
might not have enough information locally to decide
whether or not the action should be prevented, therefore
it is always performed.

An implied scenario can be classi�ed as positive or
negative [4]. A positive implied scenario is one that al-
though it was not included in the system speci�cation
and its behavior was not expected, it has a desired be-
havior. Thus, a positive IS represents an unexpected but
acceptable behavior. In this case, the system's speci�-

cation is usually extended with this new scenario. On
the other hand, a negative implied scenario is a scenario
that was not expected and its observed behavior is harm-
ful to the system's execution. That is, the system is not
performing the correct service, or in other words, per-
forming a failure. Thus, a negative IS represents an un-
expected unacceptable behavior.

However, in the present work, this distinction will be
disregarded, and therefore all ISs will be treated as a
failure for simplicity since the characterization of a pos-
itive IS requires domain-expert knowledge. Although
this can introduce an unnecessary cost to the system,
as we might add constraints to the system in order to re-
strict behaviors that could instead be included, this anal-
ysis is not in the scope of this work, as our goal is to
demonstrate the possibility of resolving various ISs at
once.

Because of the nature of concurrent systems, implied
scenarios may not happen in every system run, as mes-
sages are not synchronized and traces of execution (or-
der of the messages on the MSC) could be di� erent,
even though the same course of action is sought.

As an example, in Figure 6 an implied scenario in
the Boiler Systemis presented. The unexpected part,
that is, the cause of the implied scenario, is that Control
tries to execute the Analysis scenario before the Regis-
ter scenario is completed. This should not be possible
according to the speci�cation in Figure 2, as before each
execution of Analysis there must be at least one execu-
tion of Register.

Finally, in order to formally de�ne what is an implied

6

Figure 6: An implied scenario from the boiler system.

scenario (De�nition 2.10), we �rst need to introduce
De�nitions 2.6 to 2.9 from Uchitel et al. [4].

De�nition 2.6 (Execution). Let P = (S; L;4;q) be a
LTS. An execution ofP is a sequencew = q0l0q1l1::: of

statesqi and labelsl i 2 L such thatq0 = q andqi
l i

! qi+1

for all 0 � i < jw=2j. An execution is maximal if it
cannot be extended to still be an execution of the LTS.
We also de�neex(P) = fw j w is an execution ofPg.

An execution is a sequence of states and labels, which
shows the sequence of transitions that happened from
the initial state of the LTS. Consequently, an execution
shows which messages have been exchanged in a sys-
tem run. An execution is maximal if we cannot add any
more messages to it. That is, if we include a new mes-
sage, it will not follow the valid transitions of the LTS.

De�nition 2.7 (Projection). Let w be a word
w0w1w2w3::: and A an alphabet. The projection ofw
onto A, which we denotewjA, is the result of eliminat-
ing from the wordw all elementswi in A.

A projection works like a �lter in a word, where given
a wordw – which is composed of a sequence of sub-
words – and an alphabetA, we �lter out all the subwords
of w that are elements in the alphabet ofA.

De�nition 2.8 (Trace and Maximal Trace). Let P be a
LTS. A word w over the alphabet� (P) is a (maximal)
trace ofP if there is an (maximal) executione 2 ex(P)
such thatw = ej� (P). We usetr(e) to denote the projec-
tion of an execution on the alphabet of a LTS. We also
de�ne tr(P) = fw j w is a trace ofPgandL(P) = fw j w
is a maximal trace ofPg.

A trace is the projection of an executione over the
set of all labels of an LTS. That is, a trace is a sequence

of only the states ofe since the labels are �ltered out in
the projection. We say a trace is maximal ife is also
maximal.

De�nition 2.9 (Architecture Models). Let Pspec =
(B; H; f) be a positive MSC speci�cation with instances
I , and letAi with i 2 I be LTSs. We say that an LTSA
is an architecture model ofPspeconly if A = (A1jj ...
jjAn); � (Ai) = � (i), andL(Pspec) � L(A).

An architecture model is a parallel composition of
components' LTSs. Thus it contains the entire language
of an MSC speci�cation. That is, an architecture model
is an implementation of all components together, so it
can describe all behaviors of the speci�cation – but it is
not limited to them.

De�nition 2.10 (Implied Scenarios). Given a positive
MSC speci�cation Pspec, a tracew < L(Pspec) is
an implied scenario ofPspecif for all trace y and for
all architecture modelA of Pspec;w:y 2 L(A) implies
w:y < L(Pspec).

Therefore, following these previous de�nitions, we
de�ne an implied scenario as a system execution that is
not modeled inPspec, but which arises in every archi-
tecture model ofPspec. That is, an implied scenario is
an unexpected behavior that happens in all implementa-
tions of a given MSC speci�cation.

2.2. Clustering

Another essential background required in this work
is the one regarding the notion of clustering. Clustering
is a data mining technique used to group datapoints in
a dataset. In other words, it is a method to group ele-
ments in an unsupervised way. After obtaining the sep-
arate groups, the user still has to analyze the results and
�gure out why those elements were clustered together.
A simple de�nition of the clustering process is given by
Jain et al. [17]: “the unsupervised classi�cation of data
items into groups (clusters).”

A good clustering result is such that the cluster ele-
ments are very similar to each other and very dissimi-
lar to other clusters' elements. This way, good separa-
tion between clusters is observed, and it makes sense to
group the elements within a cluster together.

As an example, let us consider �ve datapoints in a 2-
dimensional plot. These points are represented in Figure
7a and their coordinates are shown in Table 1. In Fig-
ure 7 a simple clustering process is shown, where we
start with all elements separated (Figure 7a), and after
the clustering, we have de�ned groups of elements (Fig-
ure 7b), where each element of a given group is closer

7

A B C D E

x 1 0 2 4.5 6
y 2 1 1 6 6

Table 1: Coordinates of example datapoints in x and y axis.

to other elements in the same group, rather than to ele-
ments that belong to other groups (e.g.,D is closer toE,
thanA, B, or C).

2.2.1. Hierarchical Clustering
As de�ned by Ward [18], Hierarchical Grouping –

later called Hierarchical Clustering by Johnson [19] – is
“a procedure for forming hierarchical groups of mutu-
ally exclusive subsets, each of which has members that
are maximally similar with respect to speci�ed charac-
teristic” . There are two types of hierarchical clustering
[20]: agglomerative and divisive. The former starts with
N clusters, containing one element each, and groups
clusters one by one until there is only one cluster. The
latter starts with 1 cluster, containing allN elements,
and splits the existing clusters until there areN clusters,
containing one element each.

The agglomerative hierarchical clustering is a method
where members of a dataset (datapoints) are grouped hi-
erarchically, with the most similar datapoints (or groups
of datapoints) being merged before the less similar ones.
This similarity is often measured by a distance metric,
which means that the lower the score between two dat-
apoints, the more similar they are.

This process is recursive [19] and consists of four
steps: (i) calculate the similarity (or distance) between
all members of the current dataset; (ii) �nd the most
similar pair between those members; (iii) replace those
two members with a new one, which merely is the two
grouped together; (iv) go to (i) if there is more than one
member in the current dataset. In the end, there will be a
single member of the dataset, which is a group contain-
ing all individual datapoints that made up the original
dataset. The interesting result, however, is being able to
see the step-by-step grouping of members, which facil-
itates the detection of subgroups in the dataset.

The divisive hierarchical clustering is a method
where all members start in the same cluster and then
are split into smaller clusters until each member is in a
cluster by itself. One possible way to achieve this is by
using theDIvisive ANAlysis Clustering(DIANA) [21],
where the largest cluster is broken down in every step.
First, the elemente that is most dissimilar to the other
ones is selected and removed from that cluster; Then,
the remaining elements that are more similar toe than

A B C D E

A 0
B 1.41 0
C 1.41 2.0 0
D 5.32 6.73 5.59 0
E 6.40 7.81 6.40 1.5 0

Table 2: Euclidean distances between example datapoints.

to the other remaining ones are also moved to that new
cluster. This process is repeated until all elements have
been separated.

However, because the initial merges of small-size
clusters in the agglomerative approach correspond to
high degrees of similarity, its results are more under-
standable than the ones obtained by the divisive ap-
proach [22]. Therefore, as the clustering results will
serve as a reference to the user in our methodology, it
is essential that its results be understandable and help
the user to analyze the elements grouped. Thus, the ag-
glomerative approach is used, and from here on hierar-
chical clustering will be used to refer to the agglomera-
tive approach.

As an example, let us consider the same �ve data-
points previously presented in Table 1. To apply the
algorithm, it is required to have a similarity between
the elements. For this example, we will use the Eu-
clidean distance as the similarity metric, and Table 2
shows the Euclidean distance between these points. Fur-
thermore, because this is a symmetric matrix, only the
lower half is shown. With this information, the �rst pair
to be grouped could be either A and B or A and C, as
they have the smallest distance between them with 1.41.
Without loss of generality, A and B will be the �rst ele-
ments to be grouped.

The question now is how to calculate the similarity
between a group of datapoints (fA, Bg) and other data-
points. In fact, there are multiple ways to achieve this,
such as: (i)complete linkage clustering[23], which cal-
culates the distance between a group of elementsE and
another elemente0 as the maximum possible distance of
e 2 E ande0; (ii) single linkage clustering[23], where
the distance between a group of elementsE and another
elemente0 is the minimum possible distance ofe 2 E
ande0; and (iii) Ward's method[18], which calculates
the increase in variance if two clusters were merged.
The method used to exemplify will be the “complete
linkage clustering” [23].

By using the complete linkage method, the highest
distance between a member of the group and another
member is kept, that is, the distance betweenfA, Bgand

8

(a) sample datapoints (b) clustered datapoints

Figure 7: Example of a clustering technique.

fA ,Bg C D E

fA, Bg 0
C 2.0 0
D 6.73 5.59 0
E 7.81 6.40 1.50 0

Table 3: Euclidean distances after �rst recursion.

C will be 2.0, as that is the maximum value between
1.41 (dist(A, C)) and 2.0 (dist(B, C)). This way, the dis-
tances after the �rst recursion are shown in Table 3. The
process is then repeated with these new distances, and
the next members to be grouped will be D and E, as
these datapoints have a distance of 1.50, which is the
lowest distance on this current dataset.

The �nal result of the whole process is shown in
Figure 8. This kind of graph is called a dendrogram,
which provides a useful visual way to analyze hierarchi-
cal clusters, allowing a di� erent analysis of the dataset.
For instance, in this example, the dendrogram suggests
two clusters, which can be identi�ed in green and in red
colors and, more importantly, by their distance. The red
cluster is formed by A, B, and C, which are much closer
to one another than they are to D and E. Similarly, D
and E are more similar to each other than to the other
3 points. A careful look to the dendrogram shows that
the distance between the green cluster and the red clus-
ter is quite clear-cut (> 7), which points out they might
be two distinct clusters indeed. Notice that these are the
same clusters that were shown in Figure 7b.

2.3. Smith-Waterman Algorithm

The Smith-Waterman algorithm (SW), �rst intro-
duced by Smith & Waterman in [14], proposes to“�nd a

Figure 8: Dendrogram showing the order of grouping.

pair of segments, one from each of two long sequences,
such that there is no other pair of segments with greater
similarity” [14]. In other words, SW tries to �nd the
best local alignment between two sequences, local in
the sense that this alignment can be shorter than the se-
quences, that is, it might �nd only a small part of the
sequences where they are most similar. It is widely used
in bioinformatics research to calculate the similarity be-
tween genetic sequences.

The algorithm can be broken down into two steps: (i)
calculate the scoring matrix; and (ii) traceback the best
alignment from the highest value in the matrix.

Therefore, �rstly it is needed to calculate the scoring
matrix (SM). The SM is a (n + 1) by (m + 1) matrix,
wheren andm are the lengths of the sequences to be
compared. The �rst column and row are �lled with ze-
ros, while the rest of the matrix is �lled according to the
recurrence equation shown in Equation (1), where,A
andB are the sequences being compared, ands(Ai ; Bj)
checks ifAi andBj are the same element. If they are it
returnsMATCH, if not it returnsMIS MATCH. Lastly,
GAP, MATCH, and MIS MATCHare de�ned by the

9

user.

S Mi; j = max

8
>>>>>>>><
>>>>>>>>:

S Mi� 1; j + GAP
S Mi; j� 1 + GAP
S Mi� 1; j� 1 + s(Ai ; Bj)
0

(1)

Simply put, each cellS Mi; j is calculated with basis on
previously calculated values –S Mi� 1; j , S Mi� 1; j� 1, and
S Mi; j� 1 – but only one of these values is used at most. If
the upper-left diagonal value (S Mi� 1; j� 1) is used, then it
indicates that both sequences are reading their elements
(i.e., Ai ; Bj); thus, it is considered whetherAi = Bj ,
and a value (MATCH or MIS MATCH) is used to cal-
culateS Mi; j accordingly. However, if the upper value
(S Mi� 1; j) is used, onlyA is reading its element, as it
goes fromAi� 1 to Ai while Bj is constant. Analogously,
for the left value (S Mi; j� 1) Ai is constant andBj� 1

changes toBj . For these two last cases, a penalty (GAP)
for not considering elements from both sequences is
used to calculateS Mi; j .

After the whole SM has been populated, we can �nd
the best local alignment. This is achieved by doing
a traceback from the highest value found in the SM,
which is the score of the best alignment. First, we have
to �nd the highest value in SM, which represents the
end of the best alignment. Let us assume (k; l) is such
position. Starting from this position, the traceback is
executed by �nding the highest value amongS Mk� 1;l ,
S Mk� 1;l� 1, andS Mk;l� 1. The cell with the highest value
among those is a part of the alignment, and thus it is
included in the traceback. This procedure is repeated
with each new cell included until the next new cell has
a value of zero. Finally, the alignment is the reversed
sequence of cells included (as the �rst cell represents
the end of the alignment), where movements in the hor-
izontal consider only one sequence, vertical movements
consider the other sequence, and diagonal movements
consider both sequences.

As an example, let A= ACTGA, B = GCTCG,
MATCH = 3, MIS MATCH= -3, andGAP= -2. Fig-
ure 9a shows the calculation for a single cell, in this
case,S M4;4. The arrows represent which neighbors
cells that can help to �ll this one. From the left (S M4;3)
and above (S M3;4) cells, theGAPpenalty would apply,
so both send a value of 1+(-2). For the diagonal cell
(S M3;3), we need to check ifAi is equal toBj . In this
case, both are `T', and thus, we would use theMATCH
value. Therefore, this cell would send 3+3. Now that we
have calculated all possible values using the neighbors,
we pick the maximum fromf-1, -1, 6, 0gand update this
cell.

(a) single cell cal-
culation

(b) scoring matrix (c) alignment and
score

Figure 9: Example results for the Smith-Waterman algorithm.

The whole scoring matrix is shown in Figure 9b. The
highlighted cell is the highest value calculated. Thus
we start from that position (4,5). From there on, we �nd
the highest values among the top, left, and upper-left
neighbors and do so until we get to a cell �lled with 0.
The arrows demonstrate this process until the last non-
zero value is found.

After this traceback, we can �nd the best alignment
and score. The score is merely the highest value in the
scoring matrix, which is 7 in this case. To �nd the align-
ment, we reverse the traceback found and add the posi-
tions read from A and B. Note that if the move is ei-
ther horizontal or vertical, then a GAP must be added.
Figure 9c shows both the score and the best alignment
found.

Although in this paper SW will be used to �nd similar
sequences of messages instead of genetic ones, no ad-
justments are required from the original algorithm. For
instance, two sequences of messagesA0 andB0 from the
Boiler System could be aligned by simply changing the
input from (A, B) to (A0, B0) in the above example.

3. Proposed Methodology

In this section, our proposed methodology will be
laid out and explained in details. First, in Section 3.1
an overview of the entire methodology is presented, in-
cluding step-by-step details. In Section 3.2, the steps
that require more in-depth explanations are thoroughly
detailed. Finally, in Section 3.3 one guiding example is
used to exemplify our approach.

3.1. Overview

Our proposed methodology consists of seven steps,
which are shown in Figure 10. The methodology starts
at step 1, where the user models the scenarios of the sys-
tem. This step requires user interaction, as he/she needs
to use their domain expertise to model such scenarios
correctly. As a proof of concept, we used the LTSA-
MSC tool [24] to allow the user to perform this step.

10

After the system is modeled, it is possible to detect im-
plied scenarios (ISs) in the speci�cation, which is also
achieved by using the LTSA-MSC tool through Uchi-
tel et al. [4] approach. However, it is important to note
that the LTSA-MSC tool can only detect ISs considering
synchronous communication schemes, which might not
always be desired. If other schemes are wanted, a dif-
ferent IS detection process could be used, such as Song
et al. [3].

Furthermore, in order to detect various ISs without
the need of user input after each one, the detection
process of the LTSA-MSC tool was adapted2. The
adapted version keeps the original detection process of
the LTSA-MSC tool. However, instead of interacting
with the user after each IS is detected, as it happens with
the original tool, the adapted version iteratively collects
various ISs and exports all detected ISs to a �le, without
the need of user input throughout this process.

Therefore, in step 2, various ISs are collected from
the system speci�cation and exported. After this pro-
cess completes and exports the ISs, the next step (3)
is to detect common behaviors (CBs) among the ISs.
Nonetheless, it is possible that no IS is detected in the
system modeled by the user. If that is the case, and no
ISs were collected, the process �nishes, as there are no
elements to be analyzed.

If there were collected ISs, in step 3 the CBs among
the ISs are detected. The CBs are groups of ISs share
common traces among them. Because the LTSA-MSC
tool produces the implied scenarios in the form of er-
ror traces [3], that is, sequences of exchanged messages
until an error occurs, the CBs are de�ned as shared se-
quences of messages among various ISs. This step is
further explained in Section 3.2.1.

Next, step 4 �rst �nds the similarities between the
detected CBs. Because the CBs are sequences of mes-
sages, the SW algorithm will be used to �nd the most
similar CBs. After �nding the similarity, the CBs are
hierarchically clustered to �nd groups of similar CBs;
thus facilitating the user analysis applying the suitable
treatment in case of a positive or a negative CB of im-
plied scenarios. In this work, we postulate that if it is
possible to identify a common behavior among the im-
plied scenarios, they might also share a common cause
(fault). Therefore, a common treatment to prevent from
the common fault occurrence can be devised. The simi-
larities and further clustering of the CBs allow he/she
to classify families of CBs that have the same com-
mon cause and thus can be resolved together. Sec-

2The adapted version is available at
https://github.com/cbdm/Implied Scenarios.

tion 3.2.2 further explains the process of �nding simi-
larities among CBs and the classi�cation of families of
CBs.

After the user manages to classify a family of CBs,
he/she needs to analyze if that family contains positive
or negative CBs, that is, if the behavior the family rep-
resents is wanted or unwanted. If it is a positive be-
havior, then the ISs of the CBs were wanted scenar-
ios that were overlooked [6] during system modeling.
Thus, the user needs to go back to the modeling (step
1) and add new scenarios that represent the family of
CBs. However, if the family represents a negative be-
havior, then he/she needs to remove the CBs from the
system, which is achieved by creating constraints [4] in
step 5, which are added to a list of constraints. This
treatment process is repeated while there are CBs that
have not been resolved. That is, there are CBs that have
not been included in the speci�cation nor prevented with
constraints. The treatment of families of CBs is further
explained in Section 3.2.3.

Finally, after all families of CBs have been dealt with,
a new architectural model is generated in step 6, which
no longer contains the detected families of CBs, by con-
ducting a parallel composition of the architectural be-
havior LTS with the LTS for the constraints created.
This results in a constrained architectural model, which
does not allow for the previously collected ISs to hap-
pen.

3.2. Detailed Steps

In this subsection, the novel steps that require further
explanations are presented.

3.2.1. Detecting Common Behaviors
The Uchitel et al. [4] approach produces the implied

scenarios in the form of error traces. That is, the ap-
proach used to collect ISs detects them as sequences of
exchanged messages until an error occurs, which means
that the occurrence of the last message is the �rst de-
viation from speci�ed behavior. This last message is
called theproscribed message[25]. Therefore, the mes-
sages exchanged, as well as their repetition, before the
proscribed message are not relevant for �nding the com-
mon behavior of an IS, because they keep the system in
an abstract non-error state.

Given that, in our work, the detection of common be-
haviors (CBs) is based on the hypothesis that whenever
the same message is exchanged, as long as an IS has
not been detected, the system reaches a same abstract
state of correctness (a non-error state). In other words,
if a messagem is exchanged more than once, it did not

11

Figure 10: Steps of the proposed methodology.

take the system to di� erent abstract states, unless it led
the system to an error in one of its occurrences. Conse-
quently, other messages that were exchanged between
the di� erent occurrences ofm did not impact the sys-
tem considerably, as the system was able to reach the
same abstract state again. Hence, these messages that
happened between repeated messages in the common
behavior are removed, which results in the removal of
loops of messages. That is, each message appears at
most once in a common behavior, because if there are
multiple occurrences of the same message, it would ren-
der detection of repetition, which is thus removed. The
single exception to this is the occurrence of the pro-
scribed message, which is appended to the common be-
havior regardless of repetitions. With that in mind, a
common behavior is de�ned in De�nition 3.1.

Our so called detection of CBs is also feasible given
the fact that the messages are uniquely identi�ed in the
MSC speci�cations of Uchitel et al. approach. As such,
the LTSA-MSC tool adds a pre�x to every message with
the involved instances, so there is no ambiguity in re-
gards of the same message being reused in di� erent sce-
narios. That is, because we consider the whole message
label, these messages would be considered di� erent as
the pre�x does not match. If the messages are between
the same components, LTSA assumes that the order in
which they are exchanged gives the meaning of each
message.

De�nition 3.1 (Common Behavior). Given a set of Im-
plied ScenariosS, if there is a minimal trace of execu-
tion (that includes the initial state ofL(S pec)) c, where
8s 2 S;c � s andc < L(S pec), c is said to be the com-
mon behavior among elements ofS.

The detection of CBs among ISs is performed by
mean of Algorithm 1. The algorithm takes as input a
list of ISs and outputs a list of CBs. In line 2, an empty
list CBsis initialized, which will store the detected CBs.
Line 3 starts a loop that will be executed for each IS in
the list that was taken as input. Therefore, for eachIS,
an empty behaviorcurrent behavioris created in line 4.

Next, asIS is a sequence of messages, it starts a loop
over the messages ofIS in line 5. In line 6 it is checked
if each messagemessagehas been already included in
current behavior. If it has not been included yet, that
is, messageis a new message, then it is added to the
end of current behavior in line 15. If messageis al-
ready included incurrent behavior, then in line 7 it is
checked ifmessageis the last message of the IS (i.e.,
the proscribed message). Ifmessageis the proscribed
message, it is added to the end ofcurrent behaviorin
line 8. However, ifmessagehas already been included
in current behavior, and is not the proscribed message,
the loop in lines 10-12 removes the execution trace be-
tween the current occurrence ofmessageand the previ-
ous occurrence, following a bypassing fashion.

After the loop for each message inIS ends in line

12

ALGORITHM 1: Common behaviors detection
process

1 �ndCBs (IS s)
input : ISs – a list of implied scenarios
output: CBs – a list of common behaviors

2 CBs= [];
3 foreach IS2 ISsdo
4 current behavior= [];
5 foreachmessage2 IS do
6 if message2 current behaviorthen
7 if message= IS:last message()

then
8 current behavior:append(message)
9 else

10 while current behavior:last() ,
messagedo

11 current behavior:removelast()
12 end
13 end
14 else
15 current behavior:append(message)
16 end
17 end
18 if current behavior< CBsthen
19 CBs:append(current behavior)
20 end
21 end
22 return CBs

17, current behavior is the CB of IS. Therefore, in
line 18 it is checked ifcurrent behavioris already in-
cluded in the list of common behaviors, and if it is not,
current behavior is added toCBs. Finally, after the
loop for each IS ends in line 21, the algorithm returns
the listCBs, which contains the unique CBs among the
ISs in line 22. Additionally, an example of the applica-
tion of this algorithm is provided in Section 3.3.2.

3.2.2. Classifying Families of Common Behaviors

In this work, we hypothesize that if it is possible to
identify a common behavior among the implied sce-
narios, they might also share a common cause (fault).
Therefore, a treatment to prevent from the occurrence
of the common fault can be devised. To this end, we
propose a cluster analysis of the CBs to allow he/she to
then classify what we so callfamilies of CBs, which se-
mantically share a degree of similarity among CBs. If
so, they might also have the same common cause and
thus can be resolved (or treated) together. In this sec-
tion, we explain how families of CBs are constituted
in our approach. Then, in the next section, we provide
further details regarding the treatment for the common
cause of those families.

After the common behaviors are �ltered out among
the collected ISs, it is necessary to check if any sim-
ilar ones could be resolved together. In our proposal,
hierarchical clustering is used to group detected com-
mon behaviors. By doing so, it helps the user to ana-
lyze which groups are similar, as hierarchical clustering
shows the grouping order of the elements, and conse-
quently, which common behaviors should be considered
similar before analyzing other pairings.

However, it is �rst needed to de�ne a similarity score
between common behaviors. It is important to use a
scoring method that is sensitive to the order of mes-
sages, as they represent a sequence of system states that
lead to an error. Nevertheless, it is also essential to con-
sider that due to the concurrent nature of the systems
studied, the ordering of messages might be partially
di� erent in di� erent executions of the same behavior.
Therefore, the Smith-Waterman algorithm [14] is used,
as it returns the best local alignment between two com-
mon behaviors and a score for that alignment, which il-
lustrates what similarities they have while allowing the
addition ofgapsin the sequences, which helps to ac-
commodate the matching of the same message in dif-
ferent orders. However, contrary to the metrics usually
used in hierarchical clustering, the most similar the pair
is, the higher the score will be. Thus, the dissimilarity

13

function in Equation (2) is used.

dissimilarity(cb1; cb2) =
1

S W(cb1; cb2) + "
(2)

Because our dissimilarity function should return
lower scores for the more similar pairs, and it is based
on the Smith-Waterman algorithm score, which returns
higher scores for the most similar pairs, the inverse of
the SW score (1S W) is used. The use of the inverse is
possible because SW always returns an integer score
� 0, thus there are no negative values. Additionally,
to avoid a possible division by zero, an insigni�cantly
small non-zero value" is added to the SW score.

The values 3, -3, and -2, were respectively de�ned
for MATCH, MIS MATCH, and GAP in an empiri-
cal manner. As “in a distributed system, it is some-
times impossible to say that one of two events occurred
�rst” [26], it makes sense that a gap is penalized less
than a mismatch in our domain. This happens because
when analyzing sequences of exchanged messages, the
same messages might appear out of order in di� erent se-
quences, and a gap might indicate merely an out of order
execution. Conversely, in bioinformatics mismatches
are usually penalized less than gaps [27], as gaps are
considered to be rarer than mismatches [28].

By using the dissimilarity function, a matrix of dis-
similarities is then created containing the dissimilari-
ties between all pairs of common behaviors detected in
a system. This matrix is then used alongside Ward's
method [18] to hierarchically cluster the common be-
haviors. Finally, a dendrogram showing the order of
grouping is then exported, as well as the alignments
found by the Smith-Waterman algorithm.

These results allow the user to manually identify clus-
ters of common behaviors that are so similar that it is
possible to resolve them together, which we callfami-
lies of common behaviors. A family of CBs is formally
de�ned in De�nition 3.2. The treatment can be either
an architectural re�nement that includes CBs inPS pec
(e.g., the inclusion of new scenarios to the system speci-
�cation), or a constraint that removes CBs fromPS pec.
The treatment will be further explained in Section 3.2.3.
Finally, a treatment resolves a CB if after the treatment
is applied to the system, the ISs that constitute the CB
are not observed in the system.

De�nition 3.2 (Family of Common Behaviors). Given
a cluster of Common BehaviorsC, if there is a treatment
t that8c 2 C, t resolvesc, thenC is said to be a family
of common behaviors.

3.2.3. Treating Families of Common Behaviors

After the families of common behaviors are known,
we need to deal with them in some way. According to
[4], there are positive and negative implied scenarios.
Positive ISs, are scenarios that were overlooked during
the design of the system, that is, they are acceptable sce-
narios that were not included. This kind of IS can be
treated by merely including the acceptable behaviors in
the system's speci�cation. On the other hand, negative
ISs are unwanted behaviors. This kind of IS needs to be
treated in a di� erent manner, where guarantees that they
will not happen are added to the speci�cation.

Consequently, families of CBs can also be positive or
negative, as they can be classi�ed the same way as the
ISs that constitute it. Therefore, if a family of CBs is
positive, it can be resolved with an architectural re�ne-
ment, which is the inclusion of the behavior the family
describes in the original model of the system. How-
ever, if a family of CBs is negative, it has to be removed
from the system model, which is achieved by creating
LTS constraints [25]. An LTS constraint is an LTS that
when composed with the architectural model, removes
unwanted behaviors.

In our methodology, although, we believe it would be
possible to create the constraints automatically after the
user has classi�ed the families, the creation of such con-
straints has not been automated yet. Because the clas-
si�cation of families of CBs is a manual process, the
user needs to use their domain knowledge to create the
constraints. Therefore, the creation of the constraint is
prone to human error. Hence, to make sure that the con-
straints indeed remove the collected ISs, a script that
analyzes LTSs was developed. This script is shown in
Algorithm 2, and tests whether a trace can happen in the
constrained model.

Algorithm 2 receives an LTS� and a trace� as input,
and checks if� can happen in� . Lines 2 and 3 are ini-
tializations, as in line 2 the return variablereachedis
initialized asTrue, and in line 3 the current statecs is
initialized as the initial stateq of � . Next, it starts a loop
(line 4) that goes through each message of�.

For each message, it checks if a transition from thecs
to a next statensexists (line 5). If there is such a tran-
sition, it moves the current state to the next one (i.e.,
cs = ns) in line 6. If there is not, it setsreachedto
Falsein line 8, and as there is no transition for the cur-
rent message, the loop is broken, because there is no
transition fromcslabeled withmessage(line 9).

After the loop is �nished (line 11), it returnsreached
(line 12). reachedis True if there were always a next
statensfor each message in�, and thus� can happen in

14

ALGORITHM 2: Checks if a trace can be reached
in an LTS.

1 trace check(�; �)
input : � – an LTS (S; L;4;q), � – a trace
output: reached– a boolean indicating if�

happens in�
2 reached= True;
3 cs= q;
4 foreachmessage2 � do
5 if 9nsj(cs;message;ns) 2 4 then
6 cs= ns;
7 else
8 reached= False;
9 break;

10 end
11 end
12 return reached

� , or Falseif the � cannot happen in� .
By doing so, it is possible to verify that the traces

of collected ISs have been removed from the system
model, and thus the ISs will not happen at runtime.
However, it is not enough to check that unwanted be-
haviors are removed, as it is also vital to verify that the
expected behaviors are preserved. Therefore, it is es-
sential to check if the traces of expected behaviors are
also reached in all system models, which can also be
achieved with Algorithm 2. These traces of expected
behaviors are generated utilizing Algorithm 3.

Algorithm 3 receives a positive speci�cationPS pec
and outputs a subset of all expected behaviors of the
speci�cation. However, because it can be impossible to
list all behaviors due to the loops allowed, the only loops
considered are the ones of the typeS ! S0 ! S, which
are unrolled once. Firstly, the algorithm initializes the
variablesexpected, which contains the behaviors,next,
which contains the next nodes ofH to be visited, and
visited, which contains the nodes ofH already visited.

Next, the main loop goes through all nodes ofH
while there are unvisited nodes, in line 5. It removes the
next node to be visited and stores it incurrent, in line
6, includes the nodes that are reachable fromcurrent in
next, in line 7, and �nally includescurrent in the set of
already visited nodes, in line 8. A loop goes through
each simple pathsp (i.e., a sequence of nodes with-
out loops) that reaches thecurrentnode from the initial
nodes0, in line 9. All paths inexpectedthat are a pre�x
of spare removed fromexpectedin lines 10 and 11, and
thenspis added toexpectedin line 14 if it is not a pre�x
of any other paths inexpected. This makes sure that all

paths included are maximal paths, as the non-maximal
ones are extended with each newspconsidered.

Lastly, the loopsS ! S0 ! S are included in
the behaviors encountered. A new set is created –
loopedbehaviors–, so that the new paths are not in-
cluded in the set being analyzed, as that would generate
an in�nite loop, in line 18. This is achieved by going
through each pair of nodes (si ; sj) that are connected
with edges (si ; sj) and (sj ; si) 2 E, in line 19. Next,
another loop goes through each pathspthat containssi ,
in line 20, and expands each position ofsp that con-
tains si to si ;sj ;si and includes it inloopedbehaviors,
in lines 21 and 22. These new behaviors are included in
expected, in line 25, which is then returned in line 26.

Finally, as a proof of concept, all implied scenarios
collected throughout this work are considered to be neg-
ative. This way, even though acceptable behaviors that
might have been simply overlooked were removed, it
shows that it is possible to resolve all detected unex-
pected behaviors applying the same treatment. There-
fore, the only kind of treatment used were FSP con-
straints. There are examples of the creation of con-
straints further in Section 3.3 and Section 4. We should
note that, although this might not be the ideal way to re-
solve emergent behaviors in distributed systems, it was
done as a proof of concept and to apply the same gen-
eral concept to all systems. We believe similar results
could be obtained by doing architectural re�nements to
include or prevent emergent behaviors in a local man-
ner, instead of adding a global view to the system.

3.3. Example

To illustrate our approach, let us take the Boiler Sys-
tem as guiding example. The Boiler System model has
been previously introduced, in Section 2. Hence, step 1
is skipped, as the model is already known.

3.3.1. Collecting Implied Scenarios
The LTSA-MSC tool is used to collect implied sce-

narios. Figure 11 shows the Boiler System opened in
the tool, and the highlighted button on the upper right,
opens the dialog to start collecting ISs, which is shown
in Figure 12a. This window asks the user to input how
many ISs he/she wishes to collect. In this example, the
number of ISs to collect was set to 10.

After the 10 ISs have been collected (or the tool failed
to collect more ISs), a window tells the user the collec-
tion process �nished, how many ISs were collected, and
how much time was spent. This latter window is shown
in Figure 12b, which indicates that 10 ISs were indeed
collected, and the collection process took 3.651s. The

15

ALGORITHM 3: Lists the expected traces of the
expected behaviors of a system positive speci�ca-
tion.

1 expectedbehaviors(PS pec)
input : PS pec– a positive speci�cation

(B; H; f), whereB is a set of bMSCs,
H is an hMSC (N; E; s0), and f is is a
bijective function that maps hMSC
nodes to bMSCs.

output: expected– a set containing the
expected traces inH

2 expected= fs0g;
3 visited= fs0g;
4 next= fxj9(s0; x) 2 E; x < visitedg;
5 while next, ; do
6 current= next:pop(0);
7 next:append(fxj9(current; x) 2 E;

x < visitedg);
8 visited:append(current);
9 foreach simple path sp= sc0; sc1; :::;scn j

8 0 � i < n 9(sci ; sci + 1) 2 E; 8 0 � i < n
8 0 � j < n sci = scj $ i = j; sc0 = s0;
scn = currentdo

10 foreach spj 2 expectedj
9w = sck; sck+1; ::: and spj :w = spdo

11 expected:remove(spj);
12 end
13 if @spj 2 expected, w= sck; sck+1; ::: j

sp:w = spj then
14 expected:append(sp)
15 end
16 end
17 end
18 loopedbehaviors= ; ;
19 foreach (si ; sj) j 9(si ; sj) 2 E; 9(sj ; si) 2 E;

si , sj do
20 foreach sp= sc0; sc1; :::;scn 2 E j 9

0 � k < n sk = si do
21 sp0 =

sc0; sc1; :::;sck� 1; sci ; scj ; sck; sck+1; :::;scn;

22 loopedbehaviors:append(sp0);
23 end
24 end
25 expected:append(loopedbehaviors);
26 return expected

Figure 11: Boiler model opened in the LTSA-MSC tool.

collected ISs are also exported to a text �le, such as the
one shown in Figure 13.

3.3.2. Detecting Common Behaviors
Next, after the IS collection, the common behaviors

among the ISs are detected. For instance, take the �rst
IS shown in Figure 13:on,pressure,o� ,on,query. It is
also shown as MSC in Figure 14a. When Algorithm 1
is applied to this single IS, the two dashedon messages
in Figure 14a will be detected as a loop. Thus, the mes-
sages that are between this repetition will be removed.

(a) Start of IS collection.

(b) End of IS collection.

Figure 12: Dialogs of start and �nish of IS collection process.

16

Figure 13: The collected ISs for the Boiler example.

(a) First Boiler IS.

(b) Detected CB.

Figure 14: Example of a common behavior detection.

After this removal, the detected CB for this IS is shown
in Figure 14b.

This common behavior shows that the cause of the
analyzed implied scenario is thatControl is querying
the last measured pressure, butSensorhas not regis-
tered anything since the system started running, which
means thatControl might decide to act based on old in-
formation that might not represent the current state of
the system anymore, which correctly describes IS from
Figure 14a.

Finally, after applying Algorithm 1 to all 10 collected
ISs, only two common behaviors are detected. The ones
shown in Figure 14b (CB0) and Figure 15 (CB1). No-
tice that a CB can be an IS, but that is not always true.
For instance, the CB0 was not detected as an IS, while
CB1 was the second IS collected.

Figure 15: Second CB for the Boiler system.

(a) sw matrix (b) alignment and score

Figure 16: Smith-Waterman applied to Boiler's common behaviors.

3.3.3. Classifying Families of Common Behaviors
Because only two CBs were detected, it is only

needed to apply the Smith-Waterman algorithm to this
pair of common behaviors. The results are shown in
Figure 16. In Figure 16a the result matrix of the Smith-
Waterman algorithm is shown. By doing the traceback
from the highest score, the alignment presented in Fig-
ure 16b is obtained. Finally, using Equation (2), the
dissimilarity between the CBs is 0.25. Hence, the den-
drogram shown in Figure 17 is obtained.

Figure 17: Dendrogram for the Boiler example.

17

By analyzing the best alignment found for the pair of
common behaviors, it is possible to see that they do not
happen because of the same problem. For the �rst one
(CB0), implied scenarios that share this behavior hap-
pen because of aquerymessage before a new pressure
is registered in the current run of the system, and thus
the system might adjust to an outdated pressure.

The result of the alignment for the second common
behavior (CB1) however, has thepressuremessage be-
fore a query is carried out, thus, this erratic behavior
would not be observed. Therefore, because these com-
mon behaviors do not happen because of the same prob-
lem, they are not in the same family, and thus, for the
Boiler system, two families of common behaviors are
de�ned, each with a single common behavior.

3.3.4. Treating a Family of CBs
As an example, we will focus on the family which

contains CB0. Thus, a constraint was created to treat
this family, and is shown in Figure 18. The LTS visu-
ally shows what this constraint guarantees. Its starting
state is state 0, and this will be composed with the start-
ing state of the LTS speci�cation. It stays in state 0 for
all messages in the speci�cation alphabet but `on', that
is, as long as the message being sent is not `on', this
constraint will not interfere with the system execution.
In other words, all messages other than `on' are ignored.
However, whenever an `on' message is sent, the transi-
tion to state 1 occurs. From state 1, the only accepted
transition is going back to state 0, via message `pres-
sure'. This means that when an `on' message is sent,
the following one has to be `pressure'. Otherwise, this
constraint will not accept it.

This clearly resolves the issue of CB0, because
`query' no longer appears after any `on'. Now that this
common behavior has been treated, take a look at Fig-
ure 14. Consider that both sequences are a collected IS,
and obviously would have the same common behavior,
as they are simply partial steps of the detection process.
This constraint prevents those two scenarios to happen,
as they both have the same problem, a query of outdated
information. That is, just as our hypothesis suggested,
one treatment was able to resolve multiple ISs that share
the same CB.

In addition, to make sure that the ISs from CB0 have
been removed, a constrained architecture model is built
by composing the constraint created with the original
model. The constrained architecture model is shown in
Figure 19. The only transition labeled with the mes-
sageon is from state 0 to state 1, and the only transi-
tion outgoing from state 1 is to state 2 withpressure.

Figure 18: LTS of the constraint used to treat Boiler's �rst common
behavior.

Figure 19: LTS of the Boiler constrained architecture model.

Therefore, in the constrained architecture model the be-
havioron, querydoes not happen, as there are no three
statess0; s1; s2 that satis�es the transitions (s0; on; s1)
and (s1; query; s2) in the constrained model.

Finally, Algorithm 2 is used to verify that the col-
lected ISs have been removed in the constrained archi-
tecture model. Figure 20 shows that all collected ISs
are indeed reachable in the original architectural model,
while Figure 21 shows which ISs are reachable in the
constrained architecture model3. Furthermore, the two
expected behaviors of the system generated with Algo-
rithm 3 are preserved in the constrained model. These
behaviors are:

� init, Initialise, Register, Terminate

� init, Initialise, Register, Analysis, Register, Termi-
nate

which are then expanded with the messages of each sce-
nario. Therefore, the traces reached by Algorithm 2 are:

� on,pressure,o�

3In the following uses of this approach, only the `RESULTS SUM-
MARY' part will be shown, as it summarizes the relevant information
regarding CBs

18

Figure 20: Traces reached in the Boiler original model.

Figure 21: Traces reached in the Boiler constrained model.

� on,pressure,query,data,command,pressure,o�

As shown in the previous analysis of the LTS, all the
ISs of CB0 have been removed. Therefore, the con-
straint introduced has resolved CB0. However, CB1 can
still happen in the constrained model, which indicates
that another constraint needs to be introduced to the sys-
tem. This second constraint will be further detailed in
Section 4.

4. Evaluation

For this work, a total of seven case studies are tested
to validate the proposed methodology. These case stud-
ies were selected because they were already explored in
the literature, and provide a range of complexity for the
speci�cations. The most simple system speci�cations
areA Passenger Transportation System[4] andSeman-
tic Search Multi-Agent System[13], where each system
has only two scenarios and no loops, while the most
complex ones are theeB2BandGlobal System for Mo-
bile Mobility Management System, where each system
has over 10 unique scenarios and multiple loops. The
other three systems – (i)Boiler System[4], (ii) Cruise
Control System[15], and (iii) Distributed Smart Cam-
era System[29] – are a middle point between the two
extremes, where (i) and (ii) contains four scenarios each
and various loops, while (iii) contains �ve scenarios but
no loops.

In this section, two of these case studies will be de-
tailed: Boiler Control System and GSM Mobility Man-
agement. We believe that these two systems are well
suited, as the Boiler system is an instructional example,
which can be used to clearly illustrate the step-by-step
in a easier way (as shown in Section 3.3). On the other
hand, the GSM Mobility Management is an industry-
like system, which shows that this methodology is scal-
able to larger applications. Results for the other �ve
cases will be presented, but not explored as thoroughly.
All the data collected for all these results can be found
at https://github.com/cbdm/Implied Scenarios.

4.1. Setup

All experiments were executed in the same machine,
running macOS 10.12.6, 16 GB of memory, and a 2.7
GHz Intel Core i7 processor. Additionally, Java heap
space was set to 4GB for the LTSA-MSC tool to run.4

For each system, the same analysis was repeated with up

4All �les needed to replicate these can be found at
https://github.com/cbdm/Implied Scenarios.

19

to 25, 50, 75, 100, 125, 150, and up to 500 collected im-
plied scenarios. However, for some systems, it was not
possible to repeat the analysis with a varying number of
ISs collected. Thus, the collection process was repeated
ten times with the same number of ISs. Finally, without
loss of generality, all collected implied scenarios were
considered to be negative and thus were resolved with
constraints. That is, we created constraints to avoid the
faults of the observed behaviors. This is only to show
that it is possible to treat multiple ISs at once.

4.2. Case Study 1: Boiler System

4.2.1. System Description
The Boiler system has been previously presented in

Section 2. It was introduced by Uchitel et al. [4], and
describes a system that controls the temperature inside a
boiler to keep the pressure inside thresholds. It is com-
posed of 4 components:actuator, control, database,
andsensor. It has four scenarios, which were previously
shown in Figure 1.

4.2.2. Analysis
For the Boiler System, the LTSA-MSC tool was able

to collect a variable number of ISs. Therefore, Sec-
tion 4.2.2 shows how many ISs were collected in the
�rst line, how long it took to collect the ISs in the second
line, and how many CBs were de�ned with the ISs in
the third line. Additionally, the time spent applying the
SW algorithm, calculating the dissimilarity, clustering
the CBs, and exporting the dendrogram was 0.318115s
for all cases, and all the steps are independent of the
number of ISs in this case, as they only take the CBs as
input, and the number of CBs remained constant.

Although the number of ISs increased, the number
of detected CBs remained constant among the collected
ISs. Besides, the analysis started in Section 3.3 also de-
tected the same 2 CBs using only 10 ISs. Therefore, it is
possible to extend that analysis, which already showed
that the two CBs are distinct, and thus there are two
families of CBs, each one with a single CB. Therefore,
the �rst constraint for the Boiler is the one created pre-
viously, which is shown in Figure 18. This constraint
prevents thatquery is sent right afteron, as it makes
sure that there is apressurebetween them, which is the
unexpected behavior of the �rst CB.

Without loss of generality, the analysis will be con-
tinued using 500 collected ISs, as that was the most ISs
collected, and to show that the methodology can scale
to more elements. Additionally, Figure 22 shows that in
the original model the expected behaviors and all 500
ISs can happen at runtime, while Figure 23 shows that

Figure 22: Traces reached in Boiler original model.

Figure 23: Traces reached in Boiler �rst constrained model.

after the �rst constraint restricts the model, all 308 ISs
that share the �rst CB are removed. Thus, the constraint
is correctly de�ned.

Therefore, only the second CB needs to be treated.
The second CB consists ofon, pressure, query, data,
command, o� . Through an analysis of this sequence of
messages, and the system scenarios, it is noticed that the
unexpected behavior is for the system to turn o� right
after theactuator is told to control the temperature by
the messagecommand. Hence, a constraint is created to
prevent that the messageo� is sent right aftercommand,
as in the original model at least one messagepressure
should happen between them. This constraint is shown
in Figure 24.

The second constraint starts in state 0, where only
o� , on, pressure,andqueryare allowed, that is, all mes-
sages exceptdataandcommand. This happens because
data and commandare only exchanged in theAnaly-
sisscenario, and that scenario starts withquery. There-
fore, they are prevented unless the scenario starts, which
is perceived by observing the messagequery, which
makes the transition to state 1 occurs.

From state 1 onward, only the sequence of messages

Figure 24: Second constraint for Boiler.

20

25 ISs 50 ISs 75 ISs 100 ISs 125 ISs 150 ISs 500 ISs

collection time (h:m:s) 0:00:20.315 0:00:46.597 0:01:39.417 0:03:05.82 0:05:39.565 0:09:18.535 7:35:51.831
number of CBs 2 2 2 2 2 2 2

clustering time (s) 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115

Table 4: Time spent and # of CBs per ISs for Boiler

Figure 25: Traces reached in Boiler second constrained model.

that are in theAnalysisscenario are allowed, as the
messagequery indicated that this scenario is execut-
ing. Therefore, the transitions until state 3 follow the
order of messages of the scenario (i.e.,query, data, com-
mand). Thus, state 3 represents the state when the sys-
tem has �nished executing theAnalysisscenario. Ac-
cording to the Boiler hMSC, the following scenario
should beRegister, which contains only one message
– pressure– therefore the messagepressuretakes the
LTS back to the initial state – state 0.

Finally, to make sure that the second constraint has
prevented the ISs that share the second CB, Figure 25
shows that all 192 ISs of the CB have been avoided in
runtime after the second constraint restricts the model.
Thus the constraint has been created correctly.

4.2.3. Summary
The LTSA-MSC tool was able to collect various num-

bers of ISs in the Boiler speci�cation, which allowed
the analysis of Section 4.2.2. It shows that even though
more ISs were collected, the same CBs were detected.
Because the manual analysis uses the CBs, detecting
more ISs does not help in the analysis if the extra ISs do
not have di� erent CBs. Therefore, the 10 ISs collected
in Section 3.3 would su� ce for the analysis of this sys-
tem. Even more so, the constraints created based on the
CBs of those 10 ISs were able to remove all 500 ISs
collected later, which shows that the detected CBs suc-
cessfully describe the causes of unexpected behaviors in
the system.

4.3. Case Study 2: Global System for Mobile Mobility
Management System

4.3.1. System Description
The Global System for Mobile Mobility Management

System (GSM) was introduced by Leue et al. [30], spec-

i�es a system that keeps track of the location of GSM
devices while allowing them to make and receive calls.
It consists of four components, fourteen unique MSCs,
and an hMSC that shows how they interact. However,
in the description of the system speci�cation, Leue et
al. [30] describe some restrictions. For instance, if
CallS etupReqis executed on the second level of bM-
SCs from the top, thenMobileOrCS has to be chosen
on the lower level. Thus, even though our model has
the same fourteen unique bMSCs, some of them are re-
peated to accommodate these restrictions. Figure 26
shows our resulting hMSC, which has some repeated
bMSCs (e.g., Accept1, Accept2, and Accept3). All in-
dividual bMSCs are included in Figures 27 and 28. In
this hMSC, three major loops of scenarios can be iden-
ti�ed starting fromConnReq:

1. CallSetupReq! Identify/Authenticate ! Ac-
cept/Reject ! Encrypt/MobileORCS! Mobile-
OrCR/MobileTrCR;

2. PagingResp ! Identify/Authenticate ! Ac-
cept/Reject ! Encrypt/MobileTrCS ! Mobile-
OrCR/MobileTrCR;

3. LocUpdReq ! Identify/Authenticate ! Ac-
cept/Reject! Encrypt/LocationUpd

The �rst describes the routine of the user initiating
a call; the second describes the routine of the user re-
ceiving a call; and the third describes the routine of the
network updating the location of the user. The two bot-
tom scenarios (MobileOrCR, MobileTrCR) indicate that
a call has been terminated (i.e.,Call Release), and thus
return to theConnReqso a new routine can start.Lo-
cationUpdalso indicates the end of a routine, where the
location has been successfully updated, and thus a new
sequence of scenarios can start fromConnReq.

4.3.2. Analysis
The LTSA-MSC tool was able to collect various num-

bers of ISs in the GSM speci�cation, which allowed the
analysis of Table 5. It shows that even though more
ISs were collected, the same CBs were detected. How-
ever, the tool was unable to collect 500 ISs, as it ran
out of memory when it searched for the 358th IS. That
is, the trace of execution got so long without detected

21

Figure 26: GSM hMSC.

errors, that the tool could not extend it anymore with
its available space. Therefore, the maximum number of
ISs collected for GSM is 357, which will be used for the
analysis. Figure 30 shows that all 357 ISs and expected
behaviors are reached in the LTS of the original model,
and thus can happen at runtime.

Therefore, it is needed to analyze the 16 detected
CBs, which are shown in Figure 29. Now, the Smith-
Waterman algorithm is applied to all possible pairs of
the 16 CBs detected for the GSM. By using the dissim-
ilarity function and Ward's method, the dendrogram in
Figure 31 is obtained. The dendogram initially suggests
two clusters: one highlighted in green and the other in
red. Nevertheless, a careful look at their dissimilarity
score shows the distance between both clusters is� 0.14
(following from their dissimilarity score), it might be
the case that both clusters constitute just one family. In
fact, from a manual analysis, we con�rm that all de-
tected CBs are in the same family, and happen because
both call release (CR) scenarios are occurring concur-
rently at runtime.

To �gure this out, we can start by looking at the most
similar common behaviors, which are CBs 14 and 15.
According to our dendrogram, their dissimilarity score
is � 0:01 (1=91). By looking at their traces, it is possible
to see that they share a very large pre�x, until the last
three messages:
channelReq, immAssign, pageResp, pageRspAck,
pageRspReq, procAccessReq, provideImsi, identityReq,
identityResp, imsiAck, authenticate, authenReq, authen-
Resp, authenComplt, serviceAccept, setCipherMode,
cipherModeCmnd, cipherMode, ciphModeCmplt, ci-
phCmplt, callSetup, callSUp, con�rm, conf, addCmplt,
alerting, alert, alrt, conct

Even more so, they also have the same last three mes-
sages (answer;discon; release). However, the three last
messages are in a di� erent order. Their shared messages
tell us that both CBs are executing the following bM-
SCs:

init, ConnReq, PagingResp, Identify2, Authenticate2,
Accept2, Encrypt2, MobileTrCS

At the end of the receiving call routine (MobileTrCS),

22

(a) bMSC for CallSetupReq (b) bMSC for LocationUpd (c) bMSC for LocUpdReq

(d) bMSC for Authenticate1, Authenti-
cate2, Authenticate3

(e) bMSC for Identify1, Identify2,
Identify3

(f) bMSC for PagingResp

(g) bMSC for Accept1, Accept2, Ac-
cept3

(h) bMSC for Reject1, Reject2, Reject3

(i) bMSC for ConnReq (j) bMSC for Encrypt1, Encrypt2, Encrypt3

Figure 27: bMSCs for the GSM speci�cation.

23

	Introduction
	Background
	Scenarios
	Message Sequence Chart
	Labeled Transition System
	Finite State Process Notation
	Implied Scenarios

	Clustering
	Hierarchical Clustering

	Smith-Waterman Algorithm

	Proposed Methodology
	Overview
	Detailed Steps
	Detecting Common Behaviors
	Classifying Families of Common Behaviors
	Treating Families of Common Behaviors

	Example
	Collecting Implied Scenarios
	Detecting Common Behaviors
	Classifying Families of Common Behaviors
	Treating a Family of CBs

	Evaluation
	Setup
	Case Study 1: Boiler System
	System Description
	Analysis
	Summary

	Case Study 2: Global System for Mobile Mobility Management System
	System Description
	Analysis
	Summary

	Discussion
	Threats to Validity

	Related Work
	Conclusion

