Characterization of Implied Scenarios as Families of Common Behavior

Caio Batista de Melo®®, André Luiz Fernandes Cancgado®, Genaina Nunes Rodrigues®*

“Department of Computer Science, University of Brasilia, Brazil
bDepartment of Computer Science, University of California, Irvine, USA
P! P
“Department of Statistics, University of Brasilia, Brazil

Abstract

Concurrent systems face a threat to their reliability in emergent behaviors, which are not included in the specification
but can happen during runtime. When concurrent systems are modeled in a scenario-based manner, it is possible to
detect emergent behaviors as implied scenarios (ISs) which, analogously, are unexpected scenarios that can happen
due to the concurrent nature of the system. Until now, the process of dealing with ISs can demand significant time
and effort from the user, as they are detected and dealt with in a one by one basis. In this paper, a new methodology
is proposed to deal with various ISs at a time, by finding Common Behaviors (CBs) among them. Additionally, we
propose a novel way to group CBs into families utilizing a clustering technique using the Smith-Waterman algorithm
as a similarity measure. Thus allowing the removal of multiple ISs with a single fix, decreasing the time and effort
required to achieve higher system reliability. A total of 1798 ISs were collected across seven case studies, from which
14 families of CBs were defined. Consequently, only 14 constraints were needed to resolve all collected ISs, applying

our approach. These results support the validity and effectiveness of our methodology.

Keywords: Dependability, Implied Scenarios, Concurrent Systems, Smith-Waterman algorithm, Hierarchical

Clustering

1. Introduction

A useful way to model distributed systems’ specifi-
cations is to use scenarios. A scenario depicts how dif-
ferent components interact to achieve a common goal.
Message Sequence Charts [1] and UML sequence di-
agrams [2] are two commonly used methods to de-
sign and display these scenarios. Both of these tech-
niques use the idea of components that send each other
messages, that is, two different components that need
to work together to achieve a goal can interact syn-
chronously or asynchronously with each other through
message passing.

Scenario specifications are widely used. Neverthe-
less, according to Song et al. [3]], such specifications
can describe only partial behaviors of a system, while
its implementation has full behaviors. As a result, such
limitations can lead to a common fault in scenario spec-
ifications, which are implied scenarios. Implied scenar-
ios are unexpected behaviors that can emerge at runtime

*Corresponding author.
Email addresses: cbatista@uci.edu (Caio Batista de Melo),
acancado@unb. br (André Luiz Fernandes Cancado),
genaina@cic.unb.br (Genaina Nunes Rodrigues)

Preprint submitted to Journal of Systems and Software

due to components’ interactions that are implied in the
specification [3]]. That is, different components believe
they are behaving correctly on its own, but the compo-
sition of all their actions together is not included in the
original specification. More formally, “implied scenar-
ios indicate gaps in a scenario-based specification that
are the result of specifying the behavior of a system
from a global perspective yet expecting the behavior to
be provided in a local component-wise fashion by inde-
pendent entities with a local view of the system” [4].

Even though implied scenarios can lead to unex-
pected behaviors, they are not always unacceptable be-
haviors [5]. An implied scenario can be a positive sce-
nario that was overlooked in the original specification
or be indeed an unacceptable behavior. For the former,
it can be simply included in the specification, while the
latter has to be constrained. Therefore, implied scenar-
ios should be detected and validated with stakeholders
[6] to define how to deal with them. If left untreated
these scenarios can cause damage if they lead to un-
wanted behaviors [7]]. Particularly, implied scenarios
can affect the reliability [8] and security [9] of a sys-
tem. Thus, it is desirable to deal with these implied sce-

September 17, 2019

narios before the system is up and running to prevent straining speci ¢ subsequence of actions, which we call
unwanted behavior. However, the process of detecting common behaviors
implied scenarios has been proved to be undecidable by To accomplish our purpose, we use the Smith-
Chakraborty et all [10], meaning that there is no guaran- Waterman algorithm [14], widely used in bioinformat-
tee that the detection of all implied scenarios of a given ics research. The Smith-Waterman algorithm (SW) is
system will ever stop in polynomial time. used to identify the best local alignment between ge-
Several approaches to detect implied scenarios havenetic sequences, that is, it tries to nd which parts of
been devised (e.gl./[3H5,111+13]). Most of them, how- the two sequences have the most in common. In our
ever, do not go further on the process of dealing with work, the bene ts of using this algorithm are two-fold:
implied scenarios, that is, they stop their methodologies (i) it can be used to nd the underlying behavior among
after detecting implied scenarios. In other words, they common behaviors, and (ii) the score calculated by the
neither suggest a solution nor try to nd the root of the algorithm can be used to cluster the CBs, which assists
underlying cause. By doing so, it can lead the user to the user to de ne the families. As such, we are able to:
spend a lot of time analyzing a large number of implied (i) group common behaviors into families by using this
scenarios. Some exceptions, such as Uchitel et al. [4], algorithm, and (ii) restrict the problem space that the
Song et al. [[B], and Moshirpour et al._[13], show the user needs to analyze.
cause to the user and suggest solutions for the problem In order to evaluate the proposed methodology, we
to be xed. However, these approaches can still out- performed seven case studies with system speci cations
put a large number of implied scenarios, which can be reported in the literature. Throughout these case studies,
cumbersome to the user. Since these approaches do notve collected a total of 1798 implied scenarios, which
further investigate the correlation between the implied demanded nearly 37 hours. From these implied scenar-
scenarios, they could misguide the user on how to deal ios, our methodology was able to come up with only
with such implied scenarios at large. 14 families of common behaviors, where each family
In this work, we propose a methodology to Il inthe required a single constraint and each system speci ca-
literature gap, which is achieved by nding common be- tion required at most three constraints to prevent all col-
haviors among implied scenarios that lead the system lected implied scenarios. Additionally, our methodol-
to unexpected behavior. The methodology consists on ogy shows that the same 14 families could have been
the characterization of implied scenarios as families of found with 424 collected implied scenarios instead of
common behaviors, comprising three major steps: (i) the original 1798. This reduced the timespan of the de-
collect multiple implied scenarios; (ii) detect common tection process from nearly 37 hours to under 24 min-
behaviors among them; and, (iii) characterize such com- utes. And then, an additional of mere 3.2s was required
mon behaviors as families. For the rst step, we extend to run our clusterization process based on SW to iden-
the approach by Uchitel et al.1[4], where we automated tify the families of CBs of the seven case studies. Thus,
the process of collecting implied scenarios, that is, in- our methodology has considerably coped with both time
stead of detecting a single IS, our approach iteratively and space analysis of multiple implied scenarios in the
collects multiple distinct ISs without the need of userin- case studies evaluated.
teraction. From these collected implied scenarios, their The rest of this paper is structured as follows: Sec-
underlying core common behaviors are extracted. tion 2 introduces and details technical concepts used
Following, a characterization process is performed in in the methodology; Section 3 explains the proposed
order to de ne families of common behaviors. Next, methodology in further details and uses an example sys-
each family of common behaviors is dealt with in a sin- tem to illustrate the approach; Section 4 shows the re-
gle x. In other words, we are able to resolve multiple sults obtained through seven case studies and discusses
implied scenarios at once. By these means, we limit the the results; Section 5 discusses the related work in the
problem space of the undecidability of implied scenario literature; nally, Section 6 summarizes the contribu-
detection by treating the implied scenarios as a group, tions from this paper and introduces some ideas for fu-
instead of individually. As a result, we contribute to an- ture work.
swering a research question previously raised by Uchitel
et al. [6]: “should the entire implied scenario be con-
strained or is the unaccepted situation due to a speci c
subsequence of actions that appear in the implied sce- In this section, de nitions and technical concepts that
nario?” In fact, our methodology has evidenced that are used throughout this work will be laid out and ex-
it is possible to prevent unaccepted situations by con- plained with examples, where applicable.

2

2. Background

2.1. Scenarios

“Scenarios describe how system components, the en-
vironment and users work concurrently and interact in
order to provide system level functionality” [4]. Simply
put, a scenario is a description of a system's action. It
describes what the user expects from the system when
interacting with it. We can model entire systems based
solely on scenarios that it needs to execute, this is called
a positive scenario-based model by Uchitel et al. [4].

The Boiler Systerd] will be used as a running ex-
ample. TheBoiler Systenis a system that controls the
temperature inside a boiler, according to the measured Figure 1: bMSCs representing the Boiler's scenarios.
pressure by its sensor. It has the following components:

Actuator variates the temperature inside the boiler; The MSCs shown in Figure 1 are said to be basic

message sequence charts (bMSCs), which describe a -
nite interaction between a set of components [4]. In the

Initialize scenario for instance, th@ontrol instance is

Control tells the actuator to act according to the last
pressure measured;

Database stores the measured pressures: sending the messageato theSensoinstance. AbMSC
does not necessarily convey an order to the messages.
Sensor measures the pressure inside the boiler. However, in our case, there is only one bMSC with more

than one message. Therefore, the other ones have only

This system performs four scenarios, and these are allone possible order of execution, which is sending their
accomplished by interactions between the components.only message.
Below these scenarios are shown and the interactions For theAna|ysebMSC however, there are three mes-
between the system's components are described: sages that could lead to more possible orders of execu-
tion. In this case, it is important to note that an instance
of a bMSC has to follow the order on which the mes-
sages are sent or received. For instance Dmbase
instance can only send tldatamessage after theuery
message is received. Hence, this scenario only has one
possible order as well. Formally, De nition 2.1 shows
Register : SensorsendsDatabasethe current pressure how bMSCs are de ned by Uchitel et al. [4], which is

so itis stored and can be queried later on; the one used in this work.

Initialise : Control tells Sensorto start monitoring the
pressure;

Terminate : Controltells Sensoto stop monitoring the
pressure;

Analysis : ControlqueriesDatabaseor the latest pres- De nition 2.1 (Basic Message Sequence ChaA)ba-
sure and tell\ctuatorto alter the boiler's temper- sic message sequence chart (bMSC) is a strudture
ature accordingly. (E; L; 1; M;instancelabel, order) where: E is a count-

able set of events that can be partitioned into a set of
By implementing these four scenarios, we have a sys- send and receive events that we denseadE) and

tem that was modeled on a scenario-based way. receivéE). L is a set of message labels. We ugb) to
denoteL. | is a set of instance namebl : sendE) !
2.1.1. Message Sequence Chart receivgE) is a bijection that pairs send and receive
A message sequence chart (MSC) is a simple and events. We refer to the pairs M as messages. The
intuitive graphical representation of a scenario [1]. It function instancelE ! | maps every event to the in-

explicitly shows the interactions between components, stance on which the event occurs. Gived |, we de-
by showing each one of those as a message sent frormotefe 2 Ejinstancée) = igasi(E). The function la-
one component to another. We can use MSCs to showbel: E ! L maps events to labels. We require for all
theBoiler Systers scenarios described above as in Fig- (e;€%) 2 M thatlabele) = label(e®), and if (;,v%) 2 M
ure 1. As it can be seen, it is a convenient way to ex- andlabel(e) = label(v), theninstancée) = instancév)
emplify the interactions that happen for a scenario to be andinstancge®) = instancé\’). order is a set of total
achieved. orders ; i(E) i(E)withi 21 and ; corresponding

to bMSCs. We use (PS peg = flj9b 2 B:l 2 (b)gto
denote the alphabet of the speci cation.

2.1.2. Labeled Transition System

A labeled transition system (LTS) is a nite state ma-
chine that has an intuitive easily grasped semantics and
a simple representation [15]. They can be used to repre-
sent the expected order of messages exchanged by each
component of a distributed system.

An LTS is a directed graph, with nodes and edges,
where each node represents a state of the system, and
each edge a transition from one state to another. Edges
are labeled with the message(s) that are exchanged for
that transition to happen. Finally, there is a unique node

Figure 2: hMSC of the Boiler system speci cation. that represents the initial state of the system (state 0),
which will be denoted in red. More formally, De ni-

. .) tion 2.4 shows the de nition of LTSs by Uchitel et al.
to the top-down ordering of events on instamnce [4].

An extension of bMSCs are high-level message se-
guence charts (hMSCs), which provides the means for
composing bMSCs [4]. These can be used to show the
possible paths of execution of a system, that is, the pos-
sible continuations after each bMSC, in a way that it
is visually and easily understood. As an example, in . .

Figure _2 the hMSC for th8oiler Systt_em's shown. It _ gompgrlz?éss.isAg Lr-1ri;$(; |§ea: ztfrus(i;lireif, L:’4’ ?L\)/v[]erfa
is possible to observe that the scenarios are ordered in a (P) Labelsis a set of labels that denotes the com-
way _that the system dellver_s correct service. The formal municating alphabet &, 4 (Snfg L S)de nes
de nition of NMSCs by Uchitel et al. [4] is presented in the labeled transitions between states, ariS is the

De nition 2.2. o |
initial state. We uses ! s’to denote §1;5) 2 4 . In

De nition 2.2 (High-Level Message Sequence Charts) aqgition,we say that an LTS P is deterministis i sl
A high-level message sequence chart (hMSC) is a graph
of the form (N; E;) whereN is a set of nodesk

(N N)is asetof edges, arsg 2 N is the initial node.

We say thanis adjacent taif (n;n% 2 E. A (possibly

in nite) sequence of nodew = ng; ny;::: is a path if

N = S, andn; is adjacent tan4; for 0 i < jwj. We

say a path is maximal if it is not a proper pre x of any
other path.

De nition 2.4 (Labeled Transition Systems)Let
Statesbe the universal set of states where statethe
error state. Letabelsbe the universal set of message
labels and_abels = Labels[where denotes an in-
ternal component action that is unobservable to other

ands!' &2 impliessl = s2.

Figure 3 shows the LTS for each component of the
Boiler system. For instance, the LTS for tieensor
shows that this component, the rst message to be ex-
changed must ben, thenpressureand so on. Note that
each LTS contains only the messages exchanged by that
component (e.g., the LTS for thctuatorhas only one

Finally, the hMSC depicted in Figure 2 is a special state and one transition, because that component only
kind of hMSC, which is called a Positive Speci cation €X¢hanges one message throughout all scenarios).
(PSpec). Simply put, a PSpec contains an hMSC, a set The LTS for each component |s_der|_/ed based on the
of bMSCc, and a bijective function that maps one node Messages the component sereteives in the scenario

from the hMSC to a single bMSC. The formal de nition speci cation. For instance, let us derive the LTS for
by Uchitel et al. [4] is presented in De nition 2.3. Sensor The LTS starts with a start state, denoted by

the number 0 and marked in red in Figure 3, which is
De nition 2.3 (Positive Message Sequence Chart Spec- the initial current state. The hMSC starts in the scenario
i cation). A positive message sequence chart (MSC) init, which does not have any messagesSesasoralso
speci cation is a structur@®S pec= (B; H; f) whereB does not have any interaction. Then in the next state of
is a set of bLMSCsH = (N; A;) is a hMSC, andf : the hMSClnitialise, Sensorreceives the message “on’,
N ! B s a bijective function that maps hMSC nodes so a new state in the LTS is added and a transition from

4

even combinations that were not accepted in the original
scenario modeling. Formally, the de nition of parallel
composition by Uchitel et al. [4] is presented in De ni-
tion 2.5. The only exceptions to the rules presented are
that state is used instead of states; () and (; x) for

all x 2 States

De nition 2.5 (Parallel Composition of LTS)Let P,
andP; be LTSs wher®; = (S;; Li; 4i; g;). Their parallel
composition is denoteB;jjP, and is an LTS §;L; 4;q)
whereS =S8; Sp[f ; gL=Li[Lz;g=(ch; %), and
4 is the smallest relation irShf g L Sthat satis es
the following rules where !ai y denotesx; a;y) 2 4;:

Sl e oy —2 2t @< (W)
(s) (9!)

a a
sl ! 2 t0

Figure 3: Each Boiler component's LTS representing the messages . a
exchanged. (9! 19

s1?

(@a<((L)\ (L))nf 9:

th t state 1o th tate is added with th 2.1.3. Finite State Process Notation
€ current state fo the new stale 1S added wi € MES" " The Finite State Process (FSP) is a notation used to

sage on' as the label. This new state is then con3|deredSIOecify the behavior of concurrent systems to ltae

the current state._) i _ belled Transition System Analyz&iTSA) tool* [15]. A

The next state in the hMSC Registerin whichSen- — pqp gpeci cation generates LTSs, such as the ones in
sor sends a message “pressure’. Similarly, we create gy o5 3 and 4. FSP speci cations contain two sorts of
a new state in the LTS, add the new transition with that " hitions: primitive processes (e.g., individual compo-

message as the Ial_)el, a_nd change the current stat_e. Therhents) and composite processes (e.g., parallel composi-
we have three options in the hMSC: (1) loopRegis- tions)

terstate_, (2) transition t&nalysisstate, or (3) tr\ansition For primitive processes, only the notionsiatesac-
to Terminatestate. If (1), we keep sending ‘pressure’ o, yre 3 “andchoicewill be used. Astaterepresents
messages and stay in the same situation. So the transiz, <iate in an LTS. and is named Qi(i0,1,2..). Itis
tion from the state in the LTS to itself is added. If (2), §enoted by OF (a’) wherea is either araction 'pre "

dSensordggs not have any ir;teﬁf:éiOEMﬁlyS_;S ;0 we or achoiceand represents the existing transitions that
onota anew state to the - Fnaily, .I (3), we go leave this state. Thaction pre x represents a transition
back toTerminate whereSensomeceives "o’ and the in an LTS, and is denoted by-¢ b, wherea is a mes-

sysrt1em would go next tm'(;'g‘"ze’ Wr?lch%orresponds sage andis either a message or a state. It indicates that
to the rst extra state we adaed to the : afterais exchanged, the LTS will either change to state

Therefore, we add a transition from the current state p, 5r \wait for messagb to be exchanged. Finallghoice
back to the orlgl_nal state, Iabeleq Wlt.h “pand stop the_ is denoted bya — b, wherea is anaction pre x andb
process, to avoid going into an in nite loop. After this s ejther anaction pre x or achoice. It indicates that
whole process, the LTS obtained feensomatches the e than one transition exist leaving that state. Fig-

one presented in Figure 3. ure 5 shows the FSPs that generates the corresponding
Finally, it is possible to combine déerent LTSs by LTSs in Figure 3.

doing a parallel composition of them. The resulting LTS Finally, the only composite process used in this work

represents the expected order of messages in the entirgyjj| be parallel composition. It is analogous to the par-

system. Figure 4 shows the resulting LTS of the par- |ie| composition of LTSs, and it is detonated ijtf),
allel composition of the LTSs in Figure 3. It is impor-

tant to note that this model contains all possible com-
binations of states from the components, and includes !Available at: httpsfiwww.doc.ic.ac.uktsal.

5

Figure 4: Resulting LTS of the parallel composition of the LTSs in Figure 3.

cation is usually extended with this new scenario. On
the other hand, a negative implied scenario is a scenario
that was not expected and its observed behavior is harm-
ful to the system's execution. That is, the system is not
performing the correct service, or in other words, per-
forming a failure. Thus, a negative IS represents an un-
expected unacceptable behavior.

However, in the present work, this distinction will be
disregarded, and therefore all ISs will be treated as a
whereais a primitive process, artglis either a primitive failure for simplicity since the characterization of a pos-
process or a parallel composition. The FSP correspond-itive 1S requires domain-expert knowledge. Although
ing to the parallel composition of the Boiler components this can introduce an unnecessary cost to the system,
(Boiler = (ControljjDatabas@ActuatoijS ensao)) gen- as we might add constraints to the system in order to re-
erates the LTS in Figure 4. strict behaviors that could instead be included, this anal-

ysis is not in the scope of this work, as our goal is to
2.1.4. Implied Scenarios demonstrate the possibility of resolving various 1Ss at

An implied scenario (IS) is a scenario that was not Once.
included in the system's speci cation, but it occurs in ~ Because of the nature of concurrent systems, implied
every implementation of the speci cation [16]. Itis a scenarios may not happen in every system run, as mes-
result from implementing actions that are global to the sages are not synchronized and traces of execution (or-
system, in a local level to the components that executesder of the messages on the MSC) could beedént,
them. Because of this implementation, a component even though the same course of action is sought.
might not have enough information locally to decide =~ As an example, in Figure 6 an implied scenario in
whether or not the action should be prevented, therefore the Boiler Systenis presented. The unexpected part,
it is always performed. that is, the cause of the implied scenario, is that Control

Figure 5: Each Boiler component's FSP.

An implied scenario can be classi ed as positive or
negative [4]. A positive implied scenario is one that al-
though it was not included in the system speci cation

tries to execute the Analysis scenario before the Regis-
ter scenario is completed. This should not be possible
according to the speci cation in Figure 2, as before each

and its behavior was not expected, it has a desired be-execution of Analysis there must be at least one execu-
havior. Thus, a positive IS represents an unexpected buttion of Register.

acceptable behavior. In this case, the system's speci -

6

Finally, in order to formally de ne what is an implied

Figure 6: An implied scenario from the boiler system.

scenario (De nition 2.10), we rst need to introduce
De nitions 2.6 to 2.9 from Uchitel et al. [4].

De nition 2.6 (Execution) Let P = (S;L;4;q) be a
LTS. An execution oP is a sequence’ = (oloQly::: of

stategy; and labels; 2 L such thatyy = g andg; !Ii Oi+1
forall 0 i < jw=2j. An execution is maximal if it
cannot be extended to still be an execution of the LTS.
We also de neexP) = fwjw is an execution oPg

An execution is a sequence of states and labels, which
shows the sequence of transitions that happened from

the initial state of the LTS. Consequently, an execution

shows which messages have been exchanged in a sys:

tem run. An execution is maximal if we cannot add any
more messages to it. That is, if we include a new mes-
sage, it will not follow the valid transitions of the LTS.

De nition 2.7 (Projection) Let w be a word
WowiWows::: and A an alphabet. The projection of

onto A, which we denotavjA, is the result of eliminat-
ing from the wordw all elementsw; in A.

A projection works like a Iter in a word, where given
a wordw — which is composed of a sequence of sub-
words —and an alphabAtwe Iter out all the subwords
of w that are elements in the alphabetfof

De nition 2.8 (Trace and Maximal Trace)Let P be a
LTS. A word w over the alphabet (P) is a (maximal)
trace ofP if there is an (maximal) executiom2 exP)
such thawv = ¢ (P). We usetr(e) to denote the projec-
tion of an execution on the alphabet of a LTS. We also
de ne tr(P) = fwjwis a trace ofPgandL(P) = fwjw

is a maximal trace olPg

A trace is the projection of an executi@over the

of only the states o since the labels are Itered out in
the projection. We say a trace is maximakifs also
maximal.

De nition 2.9 (Architecture Models) Let Pspec =
(B; H; f) be a positive MSC speci cation with instances
I, and letA; with i 2 | be LTSs. We say that an LTS
is an architecture model d?speconly if A = (Ajj ..

A, (A) = (i), andL(Pspeg L(A).

An architecture model is a parallel composition of
components' LTSs. Thus it contains the entire language
of an MSC speci cation. That is, an architecture model
is an implementation of all components together, so it
can describe all behaviors of the speci cation — but it is
not limited to them.

De nition 2.10 (Implied Scenarios) Given a positive
MSC speci cation Pspe¢ a tracew < L(Pspeg is

an implied scenario oPspecif for all tracey and for
all architecture modeh of Pspecw:y 2 L(A) implies

wy < L(Pspeg.

Therefore, following these previous de nitions, we
de ne an implied scenario as a system execution that is
not modeled inPspeg¢ but which arises in every archi-
tecture model oPspec That is, an implied scenario is
an unexpected behavior that happens in all implementa-
tions of a given MSC speci cation.

2.2. Clustering

Another essential background required in this work
is the one regarding the notion of clustering. Clustering
is a data mining technique used to group datapoints in
a dataset. In other words, it is a method to group ele-
ments in an unsupervised way. After obtaining the sep-
arate groups, the user still has to analyze the results and
gure out why those elements were clustered together.
A simple de nition of the clustering process is given by
Jain et al. [17]: “the unsupervised classi cation of data
items into groups (clusters).”

A good clustering result is such that the cluster ele-
ments are very similar to each other and very dissimi-
lar to other clusters' elements. This way, good separa-
tion between clusters is observed, and it makes sense to
group the elements within a cluster together.

As an example, let us consider ve datapoints in a 2-
dimensional plot. These points are represented in Figure
7a and their coordinates are shown in Table 1. In Fig-
ure 7 a simple clustering process is shown, where we
start with all elements separated (Figure 7a), and after
the clustering, we have de ned groups of elements (Fig-

set of all labels of an LTS. That is, a trace is a sequence ure 7b), where each element of a given group is closer

7

A B C D E A B C D E
X 1 0 2 45 6 0
y 2 1 1 6 6 141 0
141 20 O

Table 1: Coordinates of example datapoints in x and y axis. 532 673 559 0

640 781 6.40 15 O

mooOw>»

to other elements in the same group, rather than to ele-
ments that belong to other groups (el@is closer tok,
thanA, B, orC).

Table 2: Euclidean distances between example datapoints.

to the other remaining ones are also moved to that new
2.2.1. Hierarchical Clustering cluster. This process is repeated until all elements have

As de ned by Ward [18], Hierarchical Grouping — been separated.
later called Hierarchical Clustering by Johnson [19] —is ~ However, because the initial merges of small-size
“a procedure for forming hierarchical groups of mutu- clusters in the agglomerative approach correspond to
ally exclusive subsets, each of which has members thathigh degrees of similarity, its results are more under-
are maximally similar with respect to speci ed charac- standable than the ones obtained by the divisive ap-
teristic”. There are two types of hierarchical clustering proach [22]. Therefore, as the clustering results will
[20]: agglomerative and divisive. The former starts with serve as a reference to the user in our methodology, it
N clusters, containing one element each, and groupsis essential that its results be understandable and help
clusters one by one until there is only one cluster. The the user to analyze the elements grouped. Thus, the ag-
latter starts with 1 cluster, containing &l elements, glomerative approach is used, and from here on hierar-
and splits the existing clusters until there Arelusters, chical clustering will be used to refer to the agglomera-
containing one element each. tive approach.

The agglomerative hierarchical clustering is amethod As an example, let us consider the same ve data-
where members of a dataset (datapoints) are grouped hi{oints previously presented in Table 1. To apply the
erarchically, with the most similar datapoints (or groups algorithm, it is required to have a similarity between
of datapoints) being merged before the less similar ones.the elements. For this example, we will use the Eu-
This similarity is often measured by a distance metric, clidean distance as the similarity metric, and Table 2
which means that the lower the score between two dat- shows the Euclidean distance between these points. Fur-
apoints, the more similar they are. thermore, because this is a symmetric matrix, only the

This process is recursive [19] and consists of four lower halfis shown. With this information, the rst pair
steps: (i) calculate the similarity (or distance) between to be grouped could be either A and B or A and C, as
all members of the current dataset; (i) nd the most they have the smallest distance between them with 1.41.
similar pair between those members; (iii) replace those Without loss of generality, A and B will be the rst ele-
two members with a new one, which merely is the two ments to be grouped.
grouped together; (iv) go to (i) if there is more than one The question now is how to calculate the similarity
member in the current dataset. In the end, there will be a between a group of datapoint®\(Bg and other data-
single member of the dataset, which is a group contain- points. In fact, there are multiple ways to achieve this,
ing all individual datapoints that made up the original such as: (icomplete linkage clusterin@3], which cal-
dataset. The interesting result, however, is being able to culates the distance between a group of elemErard
see the step-by-step grouping of members, which facil- another elemeré” as the maximum possible distance of
itates the detection of subgroups in the dataset. e 2 E andé’, (i) single linkage clustering23], where

The divisive hierarchical clustering is a method the distance between a group of elemdhind another
where all members start in the same cluster and thenelemente® is the minimum possible distance ef2 E
are split into smaller clusters until each member is in a and€e® and (i) Ward's method18], which calculates
cluster by itself. One possible way to achieve this is by the increase in variance if two clusters were merged.
using theDlvisive ANAlysis ClusteringDIANA) [21], The method used to exemplify will be the “complete
where the largest cluster is broken down in every step. linkage clustering” [23].

First, the elemen¢ that is most dissimilar to the other By using the complete linkage method, the highest
ones is selected and removed from that cluster; Then, distance between a member of the group and another
the remaining elements that are more similaettan member is kept, that is, the distance betwEerBgand

(a) sample datapoints (b) clustered datapoints

Figure 7: Example of a clustering technique.

fABg C D E

fA,Bg 0

C 20 0

D 6.73 559 0

E 781 640 150 O

Table 3: Euclidean distances after rst recursion.

.)) Figure 8: Dendrogram showing the order of grouping.
C will be 2.0, as that is the maximum value between

1.41 (dist(A, C)) and 2.0 (dist(B, C)). This way, the dis-

tances after the rstrecursion are shown in Table 3. The

proceSS is then repeated with these new diStanceS, anq)air of SegmentS, one from each of two |ong Sequencesl

the next members to be grouped will be D and E, as gych that there is no other pair of segments with greater

these datapoints have a distance of 1.50, which is the gimilarity” [14]. In other words, SW tries to nd the

lowest distance on this current dataset. best local alignment between two sequences, local in
The nal result of the whole process is shown in the sense that this alignment can be shorter than the se-

Figure 8. This kind of graph is called a dendrogram, quences, that is, it might nd only a small part of the

which provides a useful visual way to analyze hierarchi- sequences where they are most similar. It is widely used

cal clusters, allowing a dierent analysis of the dataset. in pioinformatics research to calculate the similarity be-

For instance, in this example, the dendrogram suggeststween genetic sequences.

two clusters, which can be identi ed in green and in red

colors and, more importantly, by their distance. Thered ~ The algorithm can be broken down into two steps: (i)

cluster is formed by A, B, and C, which are much closer calculate the scoring matrix; and (i) traceback the best

to one another than they are to D and E. Similarly, D alignment from the highest value in the matrix.

and E are more similar to each other than to the other Therefore, rstly it is needed to calculate the scoring

3 points. A careful look to the dendrogram shows that matrix (SM). The SM is ar{+ 1) by (m+ 1) matrix,

the distance between the green cluster and the red clus-Wheren andm are the lenaths of the sequences to be
ter is quite clear-cutX 7), which points out they might g q

o 4 . compared. The rst column and row are lled with ze-
be two distinct clusters indeed. NOt'.Ce that these are the ros, while the rest of the matrix is lled according to the
same clusters that were shown in Figure 7b.

recurrence equation shown in Equation (1), wheke,
.) andB are the sequences being compared, s{A¢g B;)
2.3. Smith-Waterman Algorithm checks ifA; andB; are the same element. If they are it
The Smith-Waterman algorithm (SW), rst intro- returnsMATCH, if not it returnsMIS MATCH Lastly,
duced by Smith & Waterman in [14], proposes 1o a GAP, MATCH, andMIS MATCHare de ned by the

user.

SM; 1+ GAP o
SM 1 1+ S(A;B))
-0 (a) single cell cal- (b) scoring matrix (c) alignment and
culation score

8
%sM 1j + GAP
SM;= maxg

Simply put, each cetb M. is calculated with basis on
previously calculated valuesSM 1j, SM 1;j 1, and Figure 9: Example results for the Smith-Waterman algorithm.
S M;; 1 —butonly one of these values is used at most. If
the upper-left diagonal valuSM 1; 1) is used, then it
indicates that both sequences are reading their elements The whole scoring matrix is shown in Figure 9b. The
(i.e., Aj; B); thus, it is considered whethe = B;, highlighted cell is the highest value calculated. Thus
and a value IATCHor MIS MATCH) is used to cal- we start from that position (4,5). From there on, we nd
culateS M; accordingly. However, if the upper value the highest values among the top, left, and upper-left
(SM 1) is used, onlyA is reading its element, as it neighbors and do so until we get to a cell lled with 0.
goes fromA; 1 to Ay while B; is constant. Analogously, The arrows demonstrate this process until the last non-

for the left value §M.; 1) A is constant andB; ; zero value is found.

changes td3;. For these two last cases, a penaByAP) After this traceback, we can nd the best alignment
for not considering elements from both sequences is and score. The score is merely the highest value in the
used to calculat& M;;. scoring matrix, which is 7 in this case. To nd the align-

After the whole SM has been populated, we can nd ment, we reverse the traceback found and add the posi-
the best local alignment. This is achieved by doing tions read from A and B. Note that if the move is ei-
a traceback from the highest value found in the SM, ther horizontal or vertical, then a GAP must be added.
which is the score of the best alignment. First, we have Figure 9c shows both the score and the best alignment
to nd the highest value in SM, which represents the found.

end of the best alignment. Let us assurkig)(is such Although in this paper SW will be used to nd similar
position. Starting from this position, the traceback is sequences of messages instead of genetic ones, no ad-
executed by nding the highest value amoB8gVk 1., justments are required from the original algorithm. For

SM 11 1, andS M 1. The cell with the highest value instance, two sequences of messaiftandB’ from the
among those is a part of the alignment, and thus it is Boiler System could be aligned by simply changing the
included in the traceback. This procedure is repeated input from (A, B) to (A B) in the above example.

with each new cell included until the next new cell has
a value of zero. Finally, the alignment is the reversed
sequence of cells included (as the rst cell represents
the end of the alignment), where movements in the hor- In this section, our proposed methodology will be

izontal consider only one sequence, vertical movementslaid out and explained in details. First, in Section 3.1

cons!der the other sequence, and diagonal movementsan overview of the entire methodology is presented, in-
consider both sequences.

" _ cluding step-by-step details. In Section 3.2, the steps
Mi‘?’ (? :_1' —e);aﬂﬁ)lseM[iEr;fcsTGAa GBAI;—GSTISG, that require more in-depth explanations are thoroughly
— o = -0, andbAr=-2. 9= qetailed. Finally, in Section 3.3 one guiding example is

ure 9a shows the calculation for a single cell, in this

case,S My4. The arrows represent which neighbors used to exemplify our approach.
cells that can help to Il this one. From the lefs (V4.3)
and above$ Ms4) cells, theGAP penalty would apply,

3. Proposed Methodology

3.1. Overview

so both send a value of+{-2). For the diagonal cell Our proposed methodology consists of seven steps,
(S Me3), we need to check ify is equal toB;. In this which are shown in Figure 10. The methodology starts
case, both are "T', and thus, we would use kh&TCH at step 1, where the user models the scenarios of the sys-

value. Therefore, this cell would senél3. Now that we tem. This step requires user interaction, alshe needs
have calculated all possible values using the neighbors,to use their domain expertise to model such scenarios
we pick the maximum fronf-1, -1, 6, @and update this correctly. As a proof of concept, we used the LTSA-
cell. MSC tool [24] to allow the user to perform this step.

10

After the system is modeled, it is possible to detect im- tion 3.2.2 further explains the process of nding simi-
plied scenarios (ISs) in the speci cation, which is also larities among CBs and the classi cation of families of
achieved by using the LTSA-MSC tool through Uchi- CBs.
tel et al. [4] approach. However, it is important to note After the user manages to classify a family of CBs,
that the LTSA-MSC tool can only detect ISs considering he/she needs to analyze if that family contains positive
synchronous communication schemes, which might not or negative CBs, that is, if the behavior the family rep-
always be desired. If other schemes are wanted, a dif- resents is wanted or unwanted. If it is a positive be-
ferent IS detection process could be used, such as Sondhavior, then the ISs of the CBs were wanted scenar-
etal. [3]. ios that were overlooked [6] during system modeling.
Furthermore, in order to detect various ISs without Thus, the user needs to go back to the modeling (step
the need of user input after each one, the detection 1) and add new scenarios that represent the family of
process of the LTSA-MSC tool was adaptéd The CBs. However, if the family represents a negative be-
adapted version keeps the original detection process ofhavior, then hishe needs to remove the CBs from the
the LTSA-MSC tool. However, instead of interacting system, which is achieved by creating constraints [4] in
with the user after each IS is detected, as it happens withstep 5, which are added to a list of constraints. This
the original tool, the adapted version iteratively collects treatment process is repeated while there are CBs that
various ISs and exports all detected ISs to a le, without have not been resolved. That is, there are CBs that have
the need of user input throughout this process. not been included in the speci cation nor prevented with
Therefore, in step 2, various ISs are collected from constraints. The treatment of families of CBs is further
the system speci cation and exported. After this pro- explained in Section 3.2.3.
cess completes and exports the ISs, the next step (3) Finally, after all families of CBs have been dealt with,
is to detect common behaviors (CBs) among the ISs. a new architectural model is generated in step 6, which
Nonetheless, it is possible that no IS is detected in the no longer contains the detected families of CBs, by con-
system modeled by the user. If that is the case, and noducting a parallel composition of the architectural be-
ISs were collected, the process nishes, as there are nohavior LTS with the LTS for the constraints created.
elements to be analyzed. This results in a constrained architectural model, which
If there were collected ISs, in step 3 the CBs among does not allow for the previously collected I1Ss to hap-
the ISs are detected. The CBs are groups of ISs sharepen.
common traces among them. Because the LTSA-MSC
tool produces the implied scenarios in the form of er- 32 petailed Steps
ror traces [3], that is, sequences of exchanged messages , . ,
until an error occurs, the CBs are de ned as shared se- In th|s_subsect|on, the novel steps that require further
quences of messages among various ISs. This step i€XPlanations are presented.
further explained in Section 3.2.1.
Next, step 4 rst nds the similarities between the 3.2.1. Detecting Common Behaviors
detected CBs. Because the CBs are sequences of mes- The Uchitel et al. [4] approach produces the implied
sages, the SW algorithm will be used to nd the most scenarios in the form of error traces. That is, the ap-
similar CBs. After nding the similarity, the CBs are proach used to collect ISs detects them as sequences of
hierarchically clustered to nd groups of similar CBs; exchanged messages until an error occurs, which means
thus facilitating the user analysis applying the suitable that the occurrence of the last message is the rst de-
treatment in case of a positive or a negative CB of im- viation from speci ed behavior. This last message is
plied scenarios. In this work, we postulate that if it is called theproscribed messad@5]. Therefore, the mes-
possible to identify a common behavior among the im- sages exchanged, as well as their repetition, before the
plied scenarios, they might also share a common causeproscribed message are not relevant for nding the com-
(fault). Therefore, a common treatment to prevent from mon behavior of an IS, because they keep the system in
the common fault occurrence can be devised. The simi- an abstract non-error state.
larities and further clustering of the CBs allow/élee Given that, in our work, the detection of common be-
to classify families of CBs that have the same com- haviors (CBs) is based on the hypothesis that whenever
mon cause and thus can be resolved together. Secthe same message is exchanged, as long as an IS has
not been detected, the system reaches a same abstract
2The adapted version is available at State of correctness (a non-error state). In other words,
httpst/github.conicbdmimplied_Scenarios. if a messagen is exchanged more than once, it did not

11

Figure 10: Steps of the proposed methodology.

take the system to derent abstract states, unless it led De nition 3.1 (Common Behavior) Given a set of Im-
the system to an error in one of its occurrences. Conse-plied Scenario$, if there is a minimal trace of execu-
quently, other messages that were exchanged betweerion (that includes the initial state &fS peg) c, where
the di erent occurrences of did not impact the sys- 8s2 S;¢c sandc < L(S peg, cis said to be the com-
tem considerably, as the system was able to reach themon behavior among elements®f

same abstract state again. Hence, these messages that 1o getection of CBs among ISs is performed by

happened between repeated messages in the COMMOR[o4 of Algorithm 1. The algorithm takes as input a
behavior are removed, which results in the removal of list of ISs and outputs a list of CBs. In line 2, an empty

loops of messages. That is, each message appears gi; ¢ gsis initialized, which will store the detected CBs.

most once in a common behavior, because if there are, jyq 3 gtarts a loop that will be executed for each IS in
multiple occurrences of the same message, it would ren- . o it that was taken as input. Therefore, for et@h

dgr detection _Of repetit.ior_l, which is thus removed. The an empty behaviocurrent behavioris created in line 4.
smgle exception to th|s is the occurrence of the pro- Next, aslS is a sequence of messages, it starts a loop
scribed message, which is appended to the common be<y e the messages i in line 5. In line 6 it is checked
havior regardless of repetitions. With that in mind, a it g3ch messagmessagdias been already included in
common behavior is de ned in De nition 3.1. currentbehavior If it has not been included yet, that
Our so called detection of CBs is also feasible given is, messagds a new message, then it is added to the
the fact that the messages are uniquely identi ed in the end of currentbehaviorin line 15. If messages al-
MSC speci cations of Uchitel et al. approach. As such, ready included ircurrentbehavior then in line 7 it is
the LTSA-MSC tool adds a pre x to every message with checked ifmessages the last message of the IS (i.e.,
the involved instances, so there is no ambiguity in re- the proscribed message). nfessages the proscribed
gards of the same message being reused ierdint sce- message, it is added to the endooirrentbehaviorin
narios. That is, because we consider the whole messagdine 8. However, ifmessagdas already been included
label, these messages would be consideredréint as in currentbehavior and is not the proscribed message,
the pre x does not match. If the messages are betweenthe loop in lines 10-12 removes the execution trace be-
the same components, LTSA assumes that the order intween the current occurrencemgssagand the previ-
which they are exchanged gives the meaning of each ous occurrence, following a bypassing fashion.
message. After the loop for each message i8 ends in line

12

ALGORITHM 1: Common behaviors detection
process

1 ndCBs (IS 9

N o g b~ W N

[ee)

10

11
12
13
14
15
16
17
18
19
20
21
22

input : ISs —a list of implied scenarios
output: CBs — a list of common behaviors
CBs=[J;
foreach 1S 2 ISsdo

currentbehavior= [];
foreachmessage ISdo
if messag® currentbehaviorthen

if message |S:last messag@
then

\ currentbehaviorappendmessage
else

while current.behaviorlast() ,
messagelo
\ currentbehaviorremovelast()
end

end
else

\ currentbehaviorappendmessage
end
end

if currentbehavior< CBsthen

\ CBsappendcurrent behavio)
end
end

return CBs

13

17, currentbehavioris the CB oflS. Therefore, in
line 18 it is checked iturrentbehavioris already in-
cluded in the list of common behaviors, and if it is not,
currentbehavioris added toCBs Finally, after the
loop for each IS ends in line 21, the algorithm returns
the listCBs which contains the unique CBs among the
ISs in line 22. Additionally, an example of the applica-
tion of this algorithm is provided in Section 3.3.2.

3.2.2. Classifying Families of Common Behaviors

In this work, we hypothesize that if it is possible to
identify a common behavior among the implied sce-
narios, they might also share a common cause (fault).
Therefore, a treatment to prevent from the occurrence
of the common fault can be devised. To this end, we
propose a cluster analysis of the CBs to allowshe to
then classify what we so cdlmilies of CBswhich se-
mantically share a degree of similarity among CBs. If
so, they might also have the same common cause and
thus can be resolved (or treated) together. In this sec-
tion, we explain how families of CBs are constituted
in our approach. Then, in the next section, we provide
further details regarding the treatment for the common
cause of those families.

After the common behaviors are ltered out among
the collected ISs, it is necessary to check if any sim-
ilar ones could be resolved together. In our proposal,
hierarchical clustering is used to group detected com-
mon behaviors. By doing so, it helps the user to ana-
lyze which groups are similar, as hierarchical clustering
shows the grouping order of the elements, and conse-
guently, which common behaviors should be considered
similar before analyzing other pairings.

However, it is rst needed to de ne a similarity score
between common behaviors. It is important to use a
scoring method that is sensitive to the order of mes-
sages, as they represent a sequence of system states that
lead to an error. Nevertheless, it is also essential to con-
sider that due to the concurrent nature of the systems
studied, the ordering of messages might be partially
di erent in di erent executions of the same behavior.
Therefore, the Smith-Waterman algorithm [14] is used,
as it returns the best local alignment between two com-
mon behaviors and a score for that alignment, which il-
lustrates what similarities they have while allowing the
addition ofgapsin the sequences, which helps to ac-
commodate the matching of the same message in dif-
ferent orders. However, contrary to the metrics usually
used in hierarchical clustering, the most similar the pair
is, the higher the score will be. Thus, the dissimilarity

function in Equation (2) is used. 3.2.3. Treating Families of Common Behaviors

After the families of common behaviors are known,

we need to deal with them in some way. According to

(2) [4], there are positive and negative implied scenarios.
Positive ISs, are scenarios that were overlooked during

the design of the system, that is, they are acceptable sce-

narios that were not included. This kind of IS can be
treated by merely including the acceptable behaviors in
higher scores for the most similar pairs, the inverse of the system's speci catlor_L on the qther hand, negative
’ ISs are unwanted behaviors. This kind of IS needs to be

1 . . .
the S.W score 4y is used. The use of the_ INVETSE IS {reated in a dierent manner, where guarantees that they
possible because SW always returns an integer score

. e will not h nar h i cation.
0, thus there are no negative values. Additionally, c othappe | afe ac.jl-ded tfoéBe spec Icat; o
to avoid a possible division by zero, an insigni cantly onsequently, families of CBs can also be positive or

small non-zero valué is added to the SW score negative, as they can be classi ed the same way as the
The values 3. -3. and -2. were respectively. de ned ISs that constitute it. Therefore, if a family of CBs is

. o positive, it can be resolved with an architectural re ne-
Lc;rl m:;—nce::lr_" ,I\Aﬂsls“i'r\:lgTdci:stlristhgSQ;Ler?niteir;]pslcralme- ment, which is the inclusion of the behavior the family

. . . describes in the original model of the system. How-
times impossible to say that one of two events occurred . . . o

N)) . ever, if a family of CBs is negative, it has to be removed
rst” [26], it makes sense that a gap is penalized less

than a mismatch in our domain. This happens becausefrom the system model, which is achieved by creating
. ' pp LTS constraints [25]. An LTS constraint is an LTS that
when analyzing sequences of exchanged messages, the

. _— Wwhen composed with the architectural model, removes
same messages might appear out of order ierint se-

CorE unwanted behaviors.
guences, and a gap might indicate merely an out of order i ,
execution. Conversely, in bioinformatics mismatches " 0ur methodology, although, we believe it would be

are usually penalized less than gaps [27], as gaps ardPossible to create the constraints automatically after the
considered to be rarer than mismatches [2{3]' user has classi ed the families, the creation of such con-

By using the dissimilarity function, a matrix of dis- straints has not been automated yet. Because the clas-

similarities is then created containing the dissimilari- si cation gf f[amllle?hof Cst IS akmanlu ‘3' pr?cess, tth?h
ties between all pairs of common behaviors detected in USer needs to use their domain knowledge to create the
a system. This matrix is then used alongside Ward's constraints. Therefore, the creation of the constraint is

method [18] to hierarchically cluster the common be- pror_1eto_human error. Hence, to make sure that t_he con-
haviors. Finally, a dendrogram showing the order of straints indeed remove the collected ISs, a script that

grouping is then exported, as well as the alignments analyzes LTSs was developed. This script is shown in
found by the Smith—Waterrr;an algorithm Algorithm 2, and tests whether a trace can happen in the

These results allow the user to manually identify clus- constral.ned model.. .
ters of common behaviors that are so similar that it s A90rithm 2 receives an LTS and a trace as input,
possible to resolve them together, which we ¢athi- ~ nd checks if can happen in. Lines 2 and 3 are ini-
lies of common behaviarg\ family of CBs is formally ~ talizations, as in line 2 the return variabieachedis
de ned in De nition 3.2. The treatment can be either initialized asTrue and in line 3 the current statesis
an architectural re nement that includes CBsR6 pec iqitialized as the initial statg of . Next, it starts a loop
(e.g., the inclusion of new scenarios to the system speci- (i€ 4) that goes through each message of
cation), or a constraint that removes CBs frd?$ pec For each message, it checks if a transition fromcthe
The treatment will be further explained in Section 3.2.3. 10 @ next statesexists (line 5). If there is such a tran-
Finally, a treatment resolves a CB if after the treatment Sition, it moves the current state to the next one (i.e.,

is applied to the system, the ISs that constitute the CB €S = N9 in line 6. If there is not, it setseachedto
are not observed in the system. Falsein line 8, and as there is no transition for the cur-

rent message, the loop is broken, because there is no
De nition 3.2 (Family of Common Behaviors)Given transition fromcslabeled withmessaggline 9).

1
dissimilarity(cbl;ch?) = —————
A) SWchl; ch2) + "

Because our dissimilarity function should return
lower scores for the more similar pairs, and it is based
on the Smith-Waterman algorithm score, which returns

a cluster of Common Behavio® if there is a treatment After the loop is nished (line 11), it returnseached
t that8c 2 C, t resolves, thenC is said to be a family (line 12). reachedis Trueif there were always a next
of common behaviors. statensfor each message inand thus can happen in

14

ALGORITHM 2: Checks if a trace can be reached
inan LTS.
1 trace_check(;)
input : —anlLTSG;L;4;q), —atrace
output: reached- a boolean indicating if
happens in
reached= True
Cs=¢q
foreachmessag® do
if 9ng(cs messagm9 2 4 then
| cs=ns
else
reached= False
break
end
end
return reached

© O N O g B~ W N

o=
= o

[ay
N

, or Falseif the cannot happen in.
By doing so, it is possible to verify that the traces

paths included are maximal paths, as the non-maximal
ones are extended with each nspconsidered.

Lastly, the loopsS ! S°! S are included in
the behaviors encountered. A new set is created —
loopedbehaviors—, so that the new paths are not in-
cluded in the set being analyzed, as that would generate
an in nite loop, in line 18. This is achieved by going
through each pair of nodesi{s;) that are connected
with edges §;sj) and ;) 2 E, in line 19. Next,
another loop goes through each pafithat contains,
in line 20, and expands each position g1f that con-
tains s to s;sj;s5 and includes it inoopedbehaviors
in lines 21 and 22. These new behaviors are included in
expectedin line 25, which is then returned in line 26.

Finally, as a proof of concept, all implied scenarios
collected throughout this work are considered to be neg-
ative. This way, even though acceptable behaviors that
might have been simply overlooked were removed, it
shows that it is possible to resolve all detected unex-
pected behaviors applying the same treatment. There-
fore, the only kind of treatment used were FSP con-
straints. There are examples of the creation of con-

of collected ISs have been removed from the system straints further in Section 3.3 and Section 4. We should
model, and thus the ISs will not happen at runtime. note that, although this might not be the ideal way to re-
However, it is not enough to check that unwanted be- solve emergent behaviors in distributed systems, it was
haviors are removed, as it is also vital to Verify that the done as a proof of Concept and to app|y the same gen-
expected behaviors are preserved. Therefore, it is es-eral concept to all systems. We believe similar results
sential to check if the traces of eXpeCted behaviors are could be obtained by doing architectural re nements to
also reached in all system models, which can also be jnclude or prevent emergent behaviors in a local man-
achieved with Algorlthm 2. These traces of expected ner, instead of adding a global view to the system.
behaviors are generated utilizing Algorithm 3.

Algorithm 3 receives a positive speci catidPS pec
and outputs a subset of all expected behaviors of the]]
speci cation. However, because it can be impossible to TO illustrate our approach, let us take the Boiler Sys-
list all behaviors due to the loops allowed, the only loops €M as guiding example. The Boiler System model has
considered are the ones of the e S°! S, which peeq previously mtroducgd, in Section 2. Hence, step 1
are unrolled once. Firstly, the algorithm initializes the S Skipped, as the model is already known.
variablesexpectedwhich contains the behavionsext
which contains the next nodes bBff to be visited, and
visited which contains the nodes bf already visited.

Next, the main loop goes through all nodes bf
while there are unvisited nodes, in line 5. It removes the
next node to be visited and stores itdarrent, in line
6, includes the nodes that are reachable foumentin
next in line 7, and nally includescurrentin the set of
already visited nodes, in line 8. A loop goes through
each simple patltsp (i.e., a sequence of nodes with-
out loops) that reaches tlsarrentnode from the initial
nodesy, in line 9. All paths inexpectedhat are a pre x
of spare removed frorexpectedn lines 10 and 11, and
thenspis added texpectedn line 14 if it is not a pre x
of any other paths iexpected This makes sure that all

15

3.3. Example

3.3.1. Collecting Implied Scenarios

The LTSA-MSC tool is used to collect implied sce-
narios. Figure 11 shows the Boiler System opened in
the tool, and the highlighted button on the upper right,
opens the dialog to start collecting ISs, which is shown
in Figure 12a. This window asks the user to input how
many ISs hishe wishes to collect. In this example, the
number of ISs to collect was set to 10.

After the 10 ISs have been collected (or the tool failed
to collect more ISs), a window tells the user the collec-
tion process nished, how many ISs were collected, and
how much time was spent. This latter window is shown
in Figure 12b, which indicates that 10 ISs were indeed
collected, and the collection process took 3.651s. The

ALGORITHM 3: Lists the expected traces of the
expected behaviors of a system positive speci ca-

tion.

1 expectedbehaviors (PS peg

N o g b~ wWwN

(o)

10

11
12
13

14
15
16
17
18
19

20

21

22
23
24
25
26

input : PS pec- a positive speci cation
(B; H; f), whereB is a set of bMSCs,
Hisan hMSC ; E; &), andf isis a
bijective function that maps hMSC
nodes to bMSCs.

output: expected- a set containing the
expected traces iH

expected= fspg

visited= fsyg

next= fxj9(sp; X) 2 E; x < visitedy

while next, ; do

current= nextpop(0);

nextappendfxj9(current x) 2 E;

X < visited);
visitedappendcurreny;
foreach simple path sp= s@; SG; :::;SG |

80 j<nsg=sG$ i=j sq=;
SG, = currentdo
foreach sp; 2 expected
9W = sq; SG+1; :::and sp:w = spdo
\ expectedemovegsp);
end
if @sp; 2 expected, W Sq; SGe1; 15
spw = sp; then
| expectecappendsp)
end
end
end
loopedbehaviors= ; ;
foreach(s;s;)j9(s;sj) 2 E; 9(sj;s) 2 E;
S, sjdo
foreachsp= s@;sc;::;SG2E |9
0 k<ng=sdo
sfP=

SG; SC; -+ SG 15 SG; SCj; SG; SGers ot

loopedbehaviorsappendsp);
end
end
expectedppendloopedbehavior$;
return expected

80 i<n9(sg;sG+1)2E;80 i<n

1 SGy

16

Figure 11: Boiler model opened in the LTSA-MSC tool.

collected ISs are also exported to a text le, such as the
one shown in Figure 13.

3.3.2. Detecting Common Behaviors

Next, after the IS collection, the common behaviors
among the ISs are detected. For instance, take the rst
IS shown in Figure 13:0n,pressure,oon,query It is
also shown as MSC in Figure 14a. When Algorithm 1
is applied to this single IS, the two dasheimessages
in Figure 14a will be detected as a loop. Thus, the mes-
sages that are between this repetition will be removed.

(a) Start of IS collection.

(b) End of IS collection.

Figure 12: Dialogs of start and nish of IS collection process.

Figure 13: The collected ISs for the Boiler example.

(a) First Boiler IS.

(b) Detected CB.

Figure 14: Example of a common behavior detection.

After this removal, the detected CB for this IS is shown
in Figure 14b.

This common behavior shows that the cause of the
analyzed implied scenario is th@ontrol is querying
the last measured pressure, [8€¢nsorhas not regis-
tered anything since the system started running, which
means thaControl might decide to act based on old in-
formation that might not represent the current state of
the system anymore, which correctly describes IS from
Figure 14a.

Finally, after applying Algorithm 1 to all 10 collected
ISs, only two common behaviors are detected. The ones
shown in Figure 14b (CBO0) and Figure 15 (CB1). No-
tice that a CB can be an IS, but that is not always true.
For instance, the CBO was not detected as an IS, while
CB1 was the second IS collected.

17

Figure 15: Second CB for the Boiler system.

(a) sw matrix (b) alignment and score

Figure 16: Smith-Waterman applied to Boiler's common behaviors.

3.3.3. Classifying Families of Common Behaviors

Because only two CBs were detected, it is only
needed to apply the Smith-Waterman algorithm to this
pair of common behaviors. The results are shown in
Figure 16. In Figure 16a the result matrix of the Smith-
Waterman algorithm is shown. By doing the traceback
from the highest score, the alignment presented in Fig-
ure 16b is obtained. Finally, using Equation (2), the
dissimilarity between the CBs is 0.25. Hence, the den-
drogram shown in Figure 17 is obtained.

Figure 17: Dendrogram for the Boiler example.

By analyzing the best alignment found for the pair of
common behaviors, it is possible to see that they do not
happen because of the same problem. For the rst one
(CBO0), implied scenarios that share this behavior hap-
pen because of querymessage before a new pressure
is registered in the current run of the system, and thus
the system might adjust to an outdated pressure.
The result of the alignment for the second common
behavior (CB1) however, has tipeessuremessage be- _ _ _
. Figure 18: LTS of the constraint used to treat Boiler's rst common
fore a query is carried out, thus, this erratic behavior -
would not be observed. Therefore, because these com-
mon behaviors do not happen because of the same prob-
lem, they are not in the same family, and thus, for the
Boiler system, two families of common behaviors are
de ned, each with a single common behavior.

3.3.4. Treating a Family of CBs

As an example, we will focus on the family which
contains CBO0. Thus, a constraint was created to treat
this family, and is shown in Figure 18. The LTS visu-
ally shows what this constraint guarantees. Its starting
state is state 0, and this will be composed with the start-
ing state of the LTS speci cation. It stays in state O for Figure 19: LTS of the Boiler constrained architecture model.
all messages in the speci cation alphabet kart, that
is, as long as the message being sent is aot this
constraint will not interfere with the system execution.
In other words, all messages other thani are ignored.
However, whenever armoi' message is sent, the transi-
tion to state 1 occurs. From state 1, the only accepted
transition is going back to state 0, via messages-
suré. This means that when amon message is sent,
the following one has to beressuré Otherwise, this
constraint will not accept it.

This clearly resolves the issue of CBO, because
“query no longer appears after angn'. Now that this
common behavior has been treated, take a look at Fig-
ure 14. Consider that both sequences are a collected IS
and obviously would have the same common behavior,
as they are simply partial steps of the detection process.
This constraint prevents those two scenarios to happen,
as they both have the same problem, a query of outdated init, Initialise, Register, Analysis, Register, Termi-

Therefore, in the constrained architecture model the be-
havioron, querydoes not happen, as there are no three
statessy; S1; S that satis es the transitionss{; on; s;)

and (5;; query,) in the constrained model.

Finally, Algorithm 2 is used to verify that the col-
lected ISs have been removed in the constrained archi-
tecture model. Figure 20 shows that all collected ISs
are indeed reachable in the original architectural model,
while Figure 21 shows which ISs are reachable in the
constrained architecture modelFurthermore, the two
expected behaviors of the system generated with Algo-
rithm 3 are preserved in the constrained model. These
behaviors are:

init, Initialise, Register, Terminate

information. That is, just as our hypothesis suggested, nate
one treatment was able to resolve multiple ISs that share
the same CB. which are then expanded with the messages of each sce-

In addition, to make sure that the 1Ss from CBO have nario. Therefore, the traces reached by Algorithm 2 are:
been removed, a constrained architecture model is built
by composing the constraint created with the original
model. The constrained architecture model is shown in
Figure].'9' The only transition labeled with the me;- 3In the following uses of this approach, only the ‘RESULTS SUM-
sageon s _from state 0 to S'Fate 1, and the_ only transi- MARY" part will be shown, as it summarizes the relevant information
tion outgoing from state 1 is to state 2 wigliessure regarding CBs

18

on,pressure,o

Figure 20: Traces reached in the Boiler original model.

Figure 21: Traces reached in the Boiler constrained model.

19

on,pressure,query,data,command,pressure,o

As shown in the previous analysis of the LTS, all the
ISs of CBO have been removed. Therefore, the con-
straint introduced has resolved CB0O. However, CB1 can
still happen in the constrained model, which indicates
that another constraint needs to be introduced to the sys-
tem. This second constraint will be further detailed in
Section 4.

4. Evaluation

For this work, a total of seven case studies are tested
to validate the proposed methodology. These case stud-
ies were selected because they were already explored in
the literature, and provide a range of complexity for the
speci cations. The most simple system speci cations
areA Passenger Transportation Systgthand Seman-
tic Search Multi-Agent Systefh3], where each system
has only two scenarios and no loops, while the most
complex ones are theB2BandGlobal System for Mo-
bile Mobility Management Systemwhere each system
has over 10 unique scenarios and multiple loops. The
other three systems — ([Boiler Systenj4], (ii) Cruise
Control Systenfl15], and (iii) Distributed Smart Cam-
era Systenj29] — are a middle point between the two
extremes, where (i) and (ii) contains four scenarios each
and various loops, while (iii) contains ve scenarios but
no loops.

In this section, two of these case studies will be de-
tailed: Boiler Control System and GSM Mobility Man-
agement. We believe that these two systems are well
suited, as the Boiler system is an instructional example,
which can be used to clearly illustrate the step-by-step
in a easier way (as shown in Section 3.3). On the other
hand, the GSM Mobility Management is an industry-
like system, which shows that this methodology is scal-
able to larger applications. Results for the other ve
cases will be presented, but not explored as thoroughly.
All the data collected for all these results can be found
at https//github.comicbdmImplied_Scenarios.

4.1. Setup

All experiments were executed in the same machine,
running macOS 10.12.6, 16 GB of memory, and a 2.7
GHz Intel Core i7 processor. Additionally, Java heap
space was set to 4GB for the LTSA-MSC tool to fun.
For each system, the same analysis was repeated with up

4All les needed to replicate these can be found at
httpsi/github.conmicbdmImplied_Scenarios.

to 25, 50, 75, 100, 125, 150, and up to 500 collected im-
plied scenarios. However, for some systems, it was not
possible to repeat the analysis with a varying number of
ISs collected. Thus, the collection process was repeated
ten times with the same number of ISs. Finally, without
loss of generality, all collected implied scenarios were
considered to be negative and thus were resolved with
constraints. That is, we created constraints to avoid the
faults of the observed behaviors. This is only to show
that it is possible to treat multiple ISs at once.

Figure 22: Traces reached in Boiler original model.

4.2. Case Study 1: Boiler System

4.2.1. System Description

The Boiler system has been previously presented in
Section 2. It was introduced by Uchitel et al. [4], and
describes a system that controls the temperature inside aafter the rst constraint restricts the model, all 308 ISs
boiler to keep the pressure inside thresholds. It is com- that share the rst CB are removed. Thus, the constraint

Figure 23: Traces reached in Boiler rst constrained model.

posed of 4 componentsactuator, control, database is correctly de ned.

andsensor It has four scenarios, which were previously Therefore, only the second CB needs to be treated.

shown in Figure 1. The second CB consists oh, pressure query, data,
commangdo . Through an analysis of this sequence of

4.2.2. Analysis messages, and the system scenarios, it is noticed that the

For the Boiler System, the LTSA-MSC tool was able unexpected behavior is for the system to turnright
to collect a variable number of I1Ss. Therefore, Sec- after theactuatoris told to control the temperature by
tion 4.2.2 shows how many ISs were collected in the the messageommandHence, a constraint is created to
rstline, how long it took to collect the ISs in the second ~ prevent that the message is sent right aftecommand
line, and how many CBs were de ned with the ISs in as in the original model at least one messpgEssure
the third line. Additionally, the time spent applying the should happen between them. This constraint is shown
SW algorithm, calculating the dissimilarity, clustering in Figure 24.
the CBs, and exporting the dendrogram was 0.318115s The second constraint starts in state 0, where only
for all cases, and all the steps are independent of the0 , on, pressureandqueryare allowed, that is, all mes-
number of ISs in this case, as they only take the CBs as sages excemtataandcommand This happens because
input, and the number of CBs remained constant. data and commandare only exchanged in th&naly-
Although the number of ISs increased, the number sisscenario, and that scenario starts vejtiery. There-
of detected CBs remained constant among the collectedfore, they are prevented unless the scenario starts, which
ISs. Besides, the analysis started in Section 3.3 also de-IS perceived by observing the messageery, which
tected the same 2 CBs using only 10 ISs. Therefore, it is makes the transition to state 1 occurs.
possible to extend that analysis, which already showed From state 1 onward, only the sequence of messages
that the two CBs are distinct, and thus there are two
families of CBs, each one with a single CB. Therefore,
the rst constraint for the Boiler is the one created pre-
viously, which is shown in Figure 18. This constraint
prevents thatjueryis sent right afteron, as it makes
sure that there is pressurebetween them, which is the
unexpected behavior of the rst CB.
Without loss of generality, the analysis will be con-
tinued using 500 collected ISs, as that was the most ISs
collected, and to show that the methodology can scale
to more elements. Additionally, Figure 22 shows that in
the original model the expected behaviors and all 500
ISs can happen at runtime, while Figure 23 shows that Figure 24: Second constraint for Boiler.

20

251Ss 50 ISs 751Ss 100 ISs 125 1Ss 150 ISs 500 ISs

collection time (h:m:s) 0:00:20.315 0:00:46.597 0:01:39.417 0:03:05.82 0:05:39.565 0:09:18.535 7:35:51.831
number of CBs 2 2 2 2 2 2 2
clustering time (s) 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115 0.318115

Table 4: Time spent and # of CBs per ISs for Boiler

i es a system that keeps track of the location of GSM
devices while allowing them to make and receive calls.
It consists of four components, fourteen unique MSCs,
and an hMSC that shows how they interact. However,
in the description of the system speci cation, Leue et
al. [30] describe some restrictions. For instance, if
Figure 25: Traces reached in Boiler second constrained model. ©g|IS etupReds executed on the second level of bM-
SCs from the top, theMobileOrCS has to be chosen
that are in theAnalysisscenario are allowed, as the ©n the lower level. Thus, even though our model has
messagequery indicated that this scenario is execut- the same fourteen unique bMSCs, some of them are re-
ing. Therefore, the transitions until state 3 follow the Peated to accommodate these restrictions. Figure 26
order of messages of the scenario (geiery, data, com- ~ Shows our resulting hMSC, which has some repeated
mang. Thus, state 3 represents the state when the sys-PMSCs (€.9., Acceptl, Accept2, and Accept3). Allin-
tem has nished executing thanalysisscenario. Ac- dividual bMSCs are included in Figures 27 and 28. In
cording to the Boiler hMSC, the following scenario this hMSC, three major loops of scenarios can be iden-

should beRegister which contains only one message i €d starting fromConnReq

— pressure— therefore the messageessuretakes the 1. CallSetupReq! IdentifyAuthenticate ! Ac-
LTS back to the initial state — state 0. cepfReject! EncryptMobileORCS! Mobile-
Finally, to make sure that the second constraint has OrCRMobileTrCR

prevented the ISs that share the second CB, Figure 25 5 PagingResp ! IdentifyAuthenticate ! Ac-
shows that all 192 ISs of the CB have been avoided in cepiReject | EncrypfMobileTrCS | Mobile-
runtime after the second constraint restricts the model. OrCRMobileTrCR

Thus the constraint has been created correctly. 3. LocUpdReq ! IdentifyAuthenticate | Ac-

4.2.3. Summary ceptReject! EncrypilocationUpd

The LTSA-MSC tool was able to collect various num- The rst describes the routine of the user initiating
bers of ISs in the Boiler speci cation, which allowed a call; the second describes the routine of the user re-
the analysis of Section 4.2.2. It shows that even though ceiving a call; and the third describes the routine of the
more ISs were collected, the same CBs were detected.network updating the location of the user. The two bot-
Because the manual analysis uses the CBs, detectingom scenariosNlobileOrCR, MobileTrCRindicate that
more ISs does not help in the analysis if the extra ISs do a call has been terminated (i.€all Release), and thus
not have di erent CBs. Therefore, the 10 ISs collected return to theConnRecso a new routine can start.o-
in Section 3.3 would suce for the analysis of this sys- cationUpdalso indicates the end of a routine, where the
tem. Even more so, the constraints created based on thdocation has been successfully updated, and thus a new
CBs of those 10 ISs were able to remove all 500 ISs sequence of scenarios can start frGonnReq
collected later, which shows that the detected CBs suc-
cessfully describe the causes of unexpected behaviors ind.3.2. Analysis
the system. The LTSA-MSC tool was able to collect various num-

bers of ISs in the GSM speci cation, which allowed the
4.3. Case Study 2: Global System for Mobile Mobility analysis of Table 5. It shows that even though more
Management System ISs were collected, the same CBs were detected. How-
4.3.1. System Description ever, the tool was unable to collect 500 ISs, as it ran

The Global System for Mobile Mobility Management out of memory when it searched for the 358th IS. That
System (GSM) was introduced by Leue et al. [30], spec- is, the trace of execution got so long without detected

21

Figure 26: GSM hMSC.

errors, that the tool could not extend it anymore with To gure this out, we can start by looking at the most
its available space. Therefore, the maximum number of similar common behaviors, which are CBs 14 and 15.
ISs collected for GSM is 357, which will be used for the According to our dendrogram, their dissimilarity score
analysis. Figure 30 shows that all 357 ISs and expectedis 0:01 (1=91). By looking at their traces, it is possible
behaviors are reached in the LTS of the original model, to see that they share a very large pre x, until the last
and thus can happen at runtime. three messages:

channelReq immAssign pageResp pageRspAck
pageRspRegrocAccessRegrovidelmsj identityReg
identityRespimsiAck authenticateauthenRegauthen-
Resp authenComplt serviceAccept setCipherModge

Therefore, it is needed to analyze the 16 detected
CBs, which are shown in Figure 29. Now, the Smith-
Waterman algorithm is applied to all possible pairs of
the 16 CBs detected for the GSM. By using the dissim- . : : .
ilarity function and Ward's method, the dendrogram in cipherModeCmng cipherMode ciphModeCmplt ci

. .) L phCmplt callSetup callSUp con rm, conf, addCmplt
Figure 31 is obtained. The dendogram initially suggegts alerting, alert, alrt, conct

two clusters: one highlighted in green and the other in
red. Nevertheless, a careful look at their dissimilarity Even more SO, they also have the same last three mes-
sagesdnswerdisconreleasg. However, the three last

score shows the distance between both cluster9ig4 . k heir sh
(following from their dissimilarity score), it might be ~ MeSsages areinadirent order. Their shared messages
tell us that both CBs are executing the following bM-

the case that both clusters constitute just one family. In

fact, from a manual analysis, we conrm that all de- Cs:
tected CBs are in the same family, and happen because init, ConnReqgPagingRespldentify2 Authenticate?
both call release (CR) scenarios are occurring concur- Accept2 Encrypt2 MobileTrCS

rently at runtime. At the end of the receiving call routin®pbileTrC3,

22

(a) bMSC for CallSetupReq (b) bMSC for LocationUpd (c) bMSC for LocUpdReq

(d) bMSC for Authenticatel, Authentite) bMSC for Identifyl, ldentify2, (f) bMSC for PagingResp
cate2, Authenticate3 Identify3

(g) bMSC for Acceptl, Accept2, Ac{h) bMSC for Rejectl, Reject2, Reject3
cept3

(i) bMSC for ConnReq (j) bMSC for Encryptl, Encrypt2, Encrypt3

Figure 27: bMSCs for the GSM speci cation.

23

	Introduction
	Background
	Scenarios
	Message Sequence Chart
	Labeled Transition System
	Finite State Process Notation
	Implied Scenarios

	Clustering
	Hierarchical Clustering

	Smith-Waterman Algorithm

	Proposed Methodology
	Overview
	Detailed Steps
	Detecting Common Behaviors
	Classifying Families of Common Behaviors
	Treating Families of Common Behaviors

	Example
	Collecting Implied Scenarios
	Detecting Common Behaviors
	Classifying Families of Common Behaviors
	Treating a Family of CBs

	Evaluation
	Setup
	Case Study 1: Boiler System
	System Description
	Analysis
	Summary

	Case Study 2: Global System for Mobile Mobility Management System
	System Description
	Analysis
	Summary

	Discussion
	Threats to Validity

	Related Work
	Conclusion

